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Abstract

The debut of the proteasome inhibitor bortezomib (Btz; Velcade®) radically and imme-
diately improved the treatment of multiple myeloma (MM), an incurable malignancy of
the plasma cell. Therapeutic resistance is unavoidable, however, and represents a major
obstacle tomaximizing the clinical potential of the drug. To address this challenge, stud-
ies have been conducted to uncover the molecular mechanisms driving Btz resistance
and to discover new targeted therapeutic strategies and combinations that restore Btz
activity. This review discusses the literature describingmolecular adaptations that confer
Btz resistance with a primary disease focus on MM. Also discussed are the most recent
advances in therapeutic strategies that overcome resistance, approaches that include
redox-modulating agents, murine double minute 2 inhibitors, therapeutic monoclonal
antibodies, and new epigenetic-targeted drugs like bromodomain and extra terminal
domain inhibitors.
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1. INTRODUCTION

The remarkable activity of the proteasome inhibitor (PI) bortezomib

(Btz; Velcade®) was first recognized in an initial phase I clinical trial where

Orlowski and colleagues observed a complete response in a multiple mye-

loma (MM) patient with advanced disease (Orlowski et al., 2002). Acceler-

ated regulatory approval was then granted by the FDA in 2003 following

two landmark phase II clinical studies in patients with advanced staged

MM ( Jagannath et al., 2004; Richardson et al., 2003). In these studies,

35% of patients, all of whom had progressive disease following at least three

therapies, achieved a measurable response with the average response dura-

tion lasting 1 year. Today, Btz is a cornerstone in the treatment of MM for

which it is approved as a first-line therapy and is a ubiquitous component of

the multidrug cocktails that are used in the clinical management of MM.

Prior to the introduction of Btz, MM was a highly aggressive and deadly

form of cancer, and minimal advances in treatment had been made since

the first trial of melphalan in the early 1960s (Bergsagel, 2014; Bergsagel,

Sprague, Austin, & Griffith, 1962). While MM remains incurable today,

the development of novel agents such as Btz has substantially improved

survival times and quality of life. The development story of Btz serves as

a blueprint for navigating the time and resource-intensive path of bench-

to-bedside translational research and is a shining example of success in the

era of targeted cancer therapy. The details of this story have been discussed

in depth elsewhere and will not be the focus of this review (Allen, 2007;

Sanchez-Serrano, 2005, 2006). Rather, the emphasis will be on a rapidly

expanding literature of molecular strategies that effectively combat thera-

peutic resistance to Btz. This is an important topic given that, despite the

initial effectiveness of Btz, nearly all patients progress to a refractory stage,

and therapeutic resistance has emerged as a clear obstacle to maximizing

the clinical benefit of the drug. There are multiple distinct molecular strat-

egies capable of enhancing the activity of Btz and restoring sensitivity to

resistant cells, and many of these approaches are positioned for immediate

clinical evaluation as they involve existing FDA approved drugs or new

molecular entities already in development with established toxicity profiles.

Over the years, numerous studies have been conducted on the mechanisms

of Btz resistance and scores of molecular-targeted approaches have been

evaluated in combination with Btz. Likewise, multiple reviews have been

published on the topic. To avoid being duplicative, this review will focus
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primarily on more recent advances and the treatment options on the horizon

for patients with Btz refractoryMM.New topics and targets covered include

inhibitors of redox regulation, murine double minute 2 (MDM2) inhibitors,

and epigenetic modulators like bromodomain and extra terminal domain

(BET) inhibitors.

2. MECHANISMS OF BTZ RESISTANCE

The human 26S proteasome is a large (�2.4 MDa)multisubunit protein

complex, consisting of a 19S regulatory cap and base and a 20S catalytic core

arranged in a cylinder that resembles a stack of rings. The inner two of four

stacked rings contain the seven β subunits (β1, β2, β3, etc.), which are the

catalytic sites responsible for carrying out the three proteolytic activities of

the proteasome. The three enzymatic activities are characterized by their

preference for cleaving peptides with specific amino-acid sequence motifs

and are named the chymotrypsin-like, trypsin-like, and caspase-like proteo-

lytic activities. For a more in depth review of proteasome structure and func-

tion, Adams (2004) and Bhattacharyya, Yu, Mim, andMatouschek (2014) are

recommended. The β5 subunit, encoded by the PSMβ5 gene, is the direct

molecular binding target of Btz. Binding of Btz to PSMβ5 inhibits the

chymotrypsin-like activity of this specific proteasome subunit and is believed

to trigger cell death through a host of downstream effects including the

inhibition of NFκB signaling via stabilization of IκB, and the activation of

multiple stress pathways including the unfolded protein response, endoplasmic

reticulum stress, oxidative stress, and the activation of stress signaling kinases

like c-Jun N-terminal kinase (JNK; Fig. 1). Cellular models of Btz resistance

have shed light on the molecular mechanisms that confer resistance to Btz.

Changes in PSMβ5 structure and expression, microenvironmental factors like

physical and paracrine interactions with bone stromal cells, and alterations in

apoptosis and autophagy signaling are at the core of those changes (Fig. 2). The

majority of studies that have investigated these resistance mechanisms have

focused on Btz. However, as second- and third-generation PIs activate a com-

mon set of downstream pathways and effectors, and in many cases target the

same catalytic subunit of the proteasome as Btz, these resistance mechanisms

have implications for the use of next-generation PIs as well.

2.1 PSMβ5 Gene Mutations
Gene mutations that alter amino-acid sequences in drug-binding pockets of

target proteins are one established mechanism of therapeutic resistance to
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targeted cancer agents. This was observed in patients with Philadelphia

chromosome positive chronic myelogenous leukemia (CML) patients

undergoing treatment with c-Abl tyrosine kinase inhibitor imatinib

(Gleevec®). Imatinib is highly efficacious in this group of patients due to

the expression of a mutant Bcr–Abl fusion protein with constitutive activity.

Mutations in the kinase domain of c-Abl near the region of imatinib binding

appear in CML patients that have relapsed following chronic imatinib expo-

sure (Branford et al., 2002; Gorre et al., 2001; Roche-Lestienne et al., 2002;

Roumiantsev et al., 2002; Shah et al., 2002). It was determined that these

point mutations reduce or completely preclude the binding of imatinib to

c-Abl. In an analogous situation, mutations in the Btz-binding pocket of

PSMβ5 have been identified inMM cell lines following prolonged exposure

Figure 1 Pleiotropic anti-MM activity of Bortezomib. Inhibition of proteasomal
chymotrypsin-like activity by Btz sets in motion a series of events that ultimately lead
to the death of MM plasma cells. Btz inhibits NFκB prosurvival signaling by stabilizing
the NFκB repressor IκB. Several cellular stress pathways are stimulated, including the
unfolded protein response (UPR) and endoplasmic reticulum (ER) stress pathway that
culminate in the transcription of proapoptotic genes (i.e., CHOP, GADD34, TRB3, PUMA,
NOXA, and BIM). Btz induces the generation of reactive oxygen species (ROS) resulting in
an oxidative shift in cellular redox balance and apoptosis. Stress kinases such as c-Jun
N-terminal kinase (JNK) are activated along with the extrinsic and intrinsic apoptosis
pathways leading to a cascade of caspase activation, the loss of mitochondrial mem-
brane potential, and release of cytochrome c into the cytosol, further potentiating
the activation of the terminal caspase, caspase-3.
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to Btz (Ri et al., 2010). Similar findings were reported in non-MM cell

models of acquired Btz resistance (L€u, Chen, et al., 2008; L€u et al., 2009;

L€u, Yang, et al., 2008; Oerlemans et al., 2008; Verbrugge et al., 2013). These

mutations also impart cross-resistance to next-generation PIs (Verbrugge

et al., 2012). Multiple PSMβ5 mutations have been identified and display

varying degrees of resistance (L€u et al., 2009). Mutations, such as the

Ala49Thr modification, occur in regions of PSMβ5 that are critical to Btz

Figure 2 Mechanisms of resistance to Bortezomib. (1) Mutations in the Btz-binding
pocket of the PSMβ5 proteasomal subunit appear in cells that have been exposed to
Btz for prolonged periods of time. These mutations disrupt Btz binding to PSMβ5
thereby reducing the activity of the drug. (2) Resistant cells upregulate PSMβ5 and other
proteasomal subunits as an adaptive response to prolonged Btz treatment. (3) Cellular
signaling events such as cytokine (i.e., IL-6) induced or constitutive STAT3 activation and
NFκB signaling drive the expression of prosurvival genes, including the antiapoptotic
Bcl-2 family member Mcl-1. Mcl-1 is a potent inhibitor of apoptosis known to confer
resistance to Btz. (4) Cells may enter into an autophagic state to avoid the cytotoxic
effects of Btz. Although autophagy is a catabolic process, it is a protective state under
certain conditions and serves as an alternative degradative pathway in the presence of
proteasome inhibition. (5) Overexpression of the antiapoptotic Bcl-2 family members,
particularly Mcl-1 and Bcl-XL, inhibits the apoptotic pathway and allows cells to escape
the cytotoxic effects of Btz. (6) Cellular antioxidants such as GSH neutralize ROS levels to
prevent toxicity associated with oxidative stress. The generation of ROS by Btz is critical
to the cytotoxic activity of Btz. Redox enzymes such as GSTP, SOD1, and GPx-1 are
upregulated in resistant cells, allowing them to neutralize harmful levels of oxidative
stress.
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binding (Groll, Berkers, Ploegh, & Ovaa, 2006). The clinical significance of

these mutations has been challenged given that they have not been detected

in MM patient samples from patients that have relapsed following Btz treat-

ment. Two published reports failed to detect the same PSMβ5 mutations

that were identified in MM cell models in patients, and there was no cor-

relation between patient responsiveness to Btz and PSMβ5 single nucleotide
polymorphisms (Lichter et al., 2012; Politou et al., 2006; Ri et al., 2010).

The study by Lichter and colleagues reported on sequencing from 16 post-

Btz treatment samples, of which three were paired pre- and post-Btz.

A potentially confounding variable in this study was that 10 of the 16 post-

Btz treatment samples were from patients that were nonresponders to Btz to

begin with. However, the fact that none of the mutations identified in cell

models were identified in 16 samples casts doubt on the relevance of these

mutations in the clinical setting. Additional studies on this topic are needed

to boost the statistical power of the clinical data set, and if confirmed, to rec-

oncile the discrepancy between the genetics of Btz resistance in cell models

versus patients.

2.2 Upregulation of Proteasomal Subunits
In addition to mutation of the PSMβ5 gene, upregulation of PSMβ5 (wild

type and/or mutant) and other proteasomal subunits is associated with Btz

resistance. Overexpression of PSMβ5 was detected at the mRNA and pro-

tein levels in MM cells that were resistant to Btz and epoxomicin (Balsas,

Galán-Malo, Marzo, & Naval, 2012), and upregulation of PSMβ5 along

with β1 and β2 subunits and the 11S regulator complex were reported in

Btz-resistant MM cell lines (R€uckrich et al., 2009). Similar results were

reported in cell types of non-MM origin (L€u, Chen, et al., 2008; L€u,
Yang, et al., 2008; Oerlemans et al., 2008), although Oerlemans and col-

leagues did not observe any appreciable upregulation of PSMβ5 at the

mRNA level, suggesting a posttranscriptional mechanism. RNAi-mediated

repression of PSMβ5 partially restored Btz sensitivity in resistant cells, dem-

onstrating a role as a driver of the resistance phenotype (Oerlemans et al.,

2008). Data supporting the existence of this mechanism in Btz refractory

patients are limited, but one study confirmed upregulation of PSMβ5
following treatment with a Btz-based regimen (Shuqing, Jianmin,

Chongmei, Hui, &Wang, 2011). The precise mechanism by which PSMβ5
upregulation contributes to Btz resistance is not entirely clear, and reports

from the literature are somewhat contradictory. L€u, Chen, et al. (2008)
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and L€u, Yang, et al. (2008) observed an increase in the cellular

chymotrypsin-like proteasome activity in Btz-resistant PSMβ5-
overexpressing cells. In this case, it is reasonable to hypothesize that more

PSMβ5 and an increase in proteasome activity would necessitate more

Btz to inhibit the proteasome to the same degree. However, other studies

did not report any changes in chymotrypsin-like proteolytic activity in

Btz-resistant cells that overexpress PSMβ5 (Oerlemans et al., 2008). In this

study, they did not observe upregulation of other proteasome subunits such

as PSMβ1, PSMβ2, or PSMα7, demonstrating that the upregulation of

PSMβ5 is not coincident with increased proteasomal density and activity

but rather a selective increase in this one particular subunit. They further

showed that the increased PSMβ5 proteins did not exist as free subunits

in the cytosol but remained in the high molecular weight cellular fraction,

suggesting that excess PSMβ5 is associated with the proteasome or forms

high molecular weight aggregates. One theoretical role of excess PSMβ5
subunits in mediating resistance is that it acts to scavenge available pools

of Btz. However, the existing data from the Oerlemans study do not support

this hypothesis as resistant cells showed nearly identical inhibition of

chymotrypsin-like proteasome activity when treated with Btz compared

to sensitive cells. What also remains controversial is how PSMβ5 becomes

upregulated. The Oerlemans study concluded that a posttranscriptional

mechanism was at play due to no detectable changes in mRNA levels. By

comparison, Lu et al. reported an increase in PSMβ5 mRNA, which they

concluded was driven by gene amplification as determined by metaphase

cytogenetics and fluorescence in situ hybridization. Balsas et al. showed that

Btz resistance was associated with aneuploidy, a finding that somewhat sup-

ports the possibility that changes in PSMβ5 copy number or changes in the

chromosomal architecture surrounding the PSMβ5 gene could be the cause
of PSMβ5 gene upregulation. These studies present a case that PSMβ5
upregulation at least contributes to Btz resistance, although the mechanistic

explanation for that role remains unclear.

2.3 Apoptotic Resistance and Autophagy
The anti-MM activity of Btz is attributed to pleiotropic effects with the

induction of programmed cell death/apoptosis being the primary mode

of cell death. Early studies into the cytotoxic effects of Btz delineated the

sequence of events triggered by Btz leading to MM cell death. Principal

among those events was the activation of apoptosis via the intrinsic
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mitochondrial pathway and/or the extrinsic pathway, which couples death

receptors to activation of the apical caspase, caspase-8 (Hideshima et al.,

2003; Mitsiades et al., 2002). Treatment of cells with the pan caspase inhib-

itor ZVAD-FMK partially blocked Btz-induced cell death, demonstrating

the contribution of this pathway to the cytotoxic effects of the drug. The

importance of apoptotic regulators in modulating Btz sensitivity was further

supported in additional studies showing synergy between Btz and apoptotic

inducers including tumor necrosis factor-related apoptosis inducing ligand

(Mitsiades, Mitsiades, Poulaki, Anderson, & Treon, 2001; Mitsiades,

Mitsiades, Poulaki, Chauhan, et al., 2001), and inhibitors of antiapoptotic

Bcl-2 family members (Chen et al., 2014; Pei, Dai, & Grant, 2003;

Trudel et al., 2007). One of those prosurvival Bcl-2 family members, mye-

loid cell leukemia-1 (Mcl-1), is a pivotal molecule regulating the sensitivity

of MM cells to Btz. Mcl-1 overexpression has been reported as a general trait

of MM (Derenne et al., 2002; Wuillème-Toumi et al., 2005), and specifi-

cally associated Btz resistance (Balsas et al., 2009; Nencioni et al., 2005). As

an important determinant of sensitivity to Btz, Mcl-1 was shown to be

cleaved and converted from an antiapoptotic protein of approximately

40 kDa to a proapoptotic 28 kDa form following Btz treatment (Podar

et al., 2008). Mcl-1 acts by blocking the activity of the proapoptotic family

members, which produce apoptotic signals through the mitochondrial

release of cytochrome c and subsequent activation of caspase-9 and

caspase-3. To target the prosurvival/antiapoptotic Bcl-2 family members

(i.e., Bcl-2, Bcl-XL, and Mcl-1), inhibitors have been designed to block

their interaction with proapoptotic members (i.e., Bax, Bak, and Bim).

BH3 mimetic Bcl-2 inhibitors include ABT-737, ABT-199, and obatoclax

(GX015-070). ABT-737 specifically binds to and inhibits Bcl-2 and Bcl-XL,

and ABT-199 targets Bcl-2 only. Both drugs, however, fail to inhibit the

activity of Mcl-1, a presumed limitation for the treatment of MM and

enhancing the activity of Btz. Despite this limitation, the combination of

ABT-737 or ABT-199 with Btz has shown promise in preclinical models

of lymphoma ( Johnson-Farley, Veliz, Bhagavathi, & Bertino, 2015;

Paoluzzi et al., 2008; Touzeau et al., 2011). The fact that similar studies

targeting MM are lacking may be an indication that the combination is less

active against MM. The characteristically high expression of Mcl-1 in MM

cells supports this possibility. Obatoclax, on the other hand, offers activity

against all the antiapoptotic family members, including Mcl-1. Obatoclax

enhances Btz sensitivity and reverses resistance (Nguyen et al., 2007;

Pérez-Galán, Roué, Villamor, Campo, & Colomer, 2007; Pérez-Galán
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et al., 2008), but these studies too were conducted using non-Hodgkin’s

lymphoma cell lines. Subsequently, a phase I/II clinical trial of obatoclax

and Btz in mantle cell lymphoma (MCL) patients reported disappointing

results, calling into question whether the promising preclinical activity of

the combination would be translated into clinical benefit. Others have

begun to develop specific Mcl-1 inhibitors, including the marinopyrrole

drug, maritoclax (Doi et al., 2012), which acts to specifically disrupt the

interaction between Mcl-1 and Bim. Future studies evaluating these

Mcl-1 targeted drugs in combination with Btz in MM are well justified.

Autophagy is the process by which cells engulf and breakdown organelles

and other cytoplasmic components. Although autophagy is a catabolic

process, it has been associated with cell survival and resistance to anticancer

therapy including Btz. Autophagy as a mechanism of resistance to Btz was

first proposed when Btz was found to induce autophagy in MM cells

(Hoang, Benavides, Shi, Frost, & Lichtenstein, 2009), and Btz-resistant cells

exhibited four times higher levels of autophagy compared to their

isogenic sensitive counterparts ( Jagannathan, Malek, Vallabhapurapu,

Vallabhapurapu, & Driscoll, 2014). Initially, however, it was determined

that the use of the autophagy inhibitor 3-methyladenine in combination

with Btz was actually antagonistic rather than synergistic (Hoang et al.,

2009), suggesting that autophagy contributes to the cytotoxic effects of

Btz rather than to resistance. On the other hand, other classes of autophagy

inhibitors such as macrolide antibiotics were shown to enhance the activity

of Btz (Moriya et al., 2013). Combination of the antimalarial agent and

inhibitor of autophagy, hydroxychloroquine, with histone deacetylase

(HDAC) inhibitors and the BH3mimetic, Bcl-2 inhibitor ABT737 together

enhanced the activity of Btz dependent on inhibition of protective

autophagy (Chen et al., 2014). One clinical trial of hydroxychloroquine

combined with Btz in refractory MM patients has been conducted to date

(Vogl, Stadtmauer et al., 2014). No conclusions related to efficacy could be

made from this single arm study, but responses were observed in 28% of

patients. So while autophagy is generally considered a mechanism of resis-

tance to Btz in MM, additional studies are required to determine how

this knowledge will be translated into improved therapy for patients.

A current limitation may be that hydroxychloroquine and its predecessor,

quinacrine, are the only clinically available autophagy inhibitors, and these

compounds have autophagy-independent mechanisms of action including

the induction of lysosome-mediated apoptosis (Boya et al., 2003;

Sui et al., 2013).
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3. APPROACHES TO OVERCOMING BTZ RESISTANCE

3.1 Next-Generation Proteasome Inhibitors
The approval and success of Btz has paved the way for the development of

second-generation PIs. These new PIs tout improved pharmacology, clin-

ical efficacy, and reduced toxicity as they were designed with increased

binding affinity for proteasomal subunits, favorable pharmaceutical proper-

ties such as oral bioavailability, and fewer adverse events. New PIs include

carfilzomib (Kyprolis®), an epoxomicin derivative and irreversible inhibitor

of proteasomal chymotrypsin-like activity; oprozomib (ONX0912), an

orally bioavailable derivative of epoxomicin and carfilzomib; ixazomib

(MLN9708), an orally bioavailable boronic acid derivative; marizomib

(NPI0052; Salinosporamide A), a natural product from the marine bacteria

Salinispora tropica that binds to PSMβ5 as well as β1 and β2 subunits; and

delanzomib (CEP18870), an orally bioavailable and irreversible inhibitor

of the proteasomal chymotrypsin-like protease activity. Notably,

carfilzomib earned FDA approval for the treatment of refractory MM in

2012 based on phase II data demonstrating a 23.7% response rate, median

response duration of 7.8 months, and median overall survival (OS) of

15.6 months (Siegel et al., 2012). The indication for carfilzomib is for

patients whose disease has progressed following at least two therapies,

including Btz and an immunomodulatory agent (IMiD). The measurable

response elicited by carfilzomib in approximately 1/4 of refractory patients

suggests that it retains activity in Btz-resistant patients, or at least a portion of

them. The major difference in activity between Btz and carfilzomib is that

carfilzomib is an irreversible inhibitor of the chymotrypsin-like activity of

the 20S proteasome, whereas Btz has reversible binding kinetics. With

regard to toxicity, the percentage of patients experiencing peripheral neu-

ropathy, the most common dose-limiting event for Btz, is low with

carfilzomib treatment, measured at 13.9% in a cohort of 526 patients from

four separate clinical trials, many of whom reported preexisting peripheral

neuropathy at baseline (Siegel et al., 2013). Additional studies have shown

similar response rates for carfilzomib in multidrug regimens that include

lenalidomide and dexamethasone (Stewart et al., 2015). In this trial, roughly

65% of patients were refractory to Btz; however, the specific response rate

for the Btz refractory cohort was not separated from the Btz naı̈ve group.

Nevertheless, given that the majority of patients enrolled in the study were

refractory to Btz, it can be inferred that carfilzomib was effective in at least a
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portion of patients with Btz-resistant disease. Similar clinical responses were

seen with oprozomib, which exhibited measurable but modest activity in

Btz refractory patients. In a phase Ib trial, a 14.3% overall response rate

(ORR) was observed in Btz refractory patients (n¼7) and a 25% ORR

was observed in phase II (n¼12). There are other important clinical consid-

erations (i.e., tolerability) of the new drug, but focusing only on response

rate, it is clear that while oprozomib provides benefit to a fraction of Btz

refractory MM patients, the majority of them remain unresponsive (Vij

et al., 2014). These available data for next-generation PIs suggest that resis-

tance mechanism(s) that impact Btz activity may limit the effectiveness of

these newer PIs. At the molecular level, this hypothesis is supported by cell

models of PI resistance, where cells that have acquired resistance to Btz show

cross-resistance to other PIs including carfilzomib and oprozomib (de Wilt

et al., 2012; Franke et al., 2012; Stessman et al., 2013, 2014). Therefore, the

identification and understanding of Btz resistance mechanisms and strategies

to overcome them are not only critical for maximizing the activity of Btz,

but will likely benefit next-generation PIs like carfilzomib and oprozomib.

3.2 Redox Signaling
The regulation of reduction and oxidation reactions (i.e., redox) and main-

tenance of redox homeostasis are critical to the survival and function of all

cells. It is particularly important for MM plasma cells, which are naturally

specialized for the mass production and secretion of immunoglobulin (Ig)

proteins, a process that generates oxidative stress as a by-product. Ig mole-

cules are large multisubunit proteins held together by intra- and interchain

disulfide bonds and noncovalent interactions (Liu & May, 2012), and their

folding is oxidative by nature. The proper folding of one Ig molecule

requires the formation of approximately 100 disulfide bonds. One plasma

cell is capable of synthesizing thousands of Ig molecules per second

(Shimizu & Hendershot, 2009), meaning that one Ig-producing MM cell

may produce roughly 100,000 disulfide bonds per second (Cenci & Sitia,

2007; Hendershot & Sitia, 2005). Molecular oxygen serves as the electron

acceptor for each disulfide bond reaction, yielding the production of reactive

oxygen species (ROS). To neutralize the increased ROS load associated

with Ig synthesis and folding, plasma cell differentiation is accompanied

by an intracellular antioxidant response, with the major adaptation being

increased synthesis of glutathione (GSH) (Cullinan & Diehl, 2004;

Harding et al., 2003), a tripeptide composed of the amino acids cysteine,
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glutamate, and glycine that is the major endogenous antioxidant of all cells.

The thiol functional group of cysteine is critical to the antioxidant

properties of GSH, as sulfur is a flexible atom capable of donating electrons

to reduce free radicals [i.e., hydrogen peroxide (H2O2)] or oxidized

proteins, lipids, and nucleic acids. GSH increases the viability and growth

of MM cells in culture, and other thiol-containing molecules, such as

beta mercaptoethanol, are commonly added to the culture media of

plasmacytoma cell lines and antibody-producing hybridomas (de St

Groth, 1983; Merten, Keller, Cabanie, Litwin, & Flamand, 1989;

Schneider, 1989; Shacter, 1987), further emphasizing the importance of

maintaining redox balance in these cell types. Because the natural biology

of MM cells as secretory cells predisposes them to high levels of oxidative

stress (Cenci & Sitia, 2007), redox signaling is an attractive therapeutic

target/pathway for MM.

In addition to being a generally promising therapeutic strategy in the

treatment of MM, redox-targeted approaches are also effective Btz-

sensitizing agents, capable of restoring sensitivity to resistant cells and

enhancing the activity of Btz and other PI therapies. PIs deplete cellular

pools of GSH and upregulate the expression of redox enzymes such as glu-

tamate–cysteine ligase, heme oxygenase-1, and GST-pi (Nerini-Molteni,

Ferrarini, Cozza, Caligaris-Cappio, & Sitia, 2008; Usami et al., 2005),

suggesting that changes in redox-modulating enzymes are an adaptive

response to PI therapy. Btz-resistant MM cell lines overexpress important

redox-regulating enzymes including copper-zinc superoxide dismutase

(CuZnSOD or SOD1), glutathione peroxidase-1 (GPx-1), and GSH

(Salem, McCormick, Wendlandt, Zhan, & Goel, 2015). SOD1 and

GPx-1 are key antioxidant enzymes involved in scavenging excess levels

of ROS by catalyzing reactions that neutralize superoxide anion and

H2O2, respectively. The ectopic expression of SOD1 leads to Btz resistance

in MM cells, confirming that upregulation of this one redox modulator is

sufficient to protect cells from Btz-induced cell death (Salem et al., 2015).

ROS are generated by Btz treatment in a variety of cancer cell types

(Fribley, Zeng, & Wang, 2004; Ling, Liebes, Zou, & Perez-Soler, 2003),

and antioxidants such as N-acetyl cysteine (NAC) protect cells from Btz-

induced death (Pérez-Galán et al., 2006; Salem et al., 2015; Yu,

Rahmani, Dent, & Grant, 2004). Taken together, these studies form a

mechanistic link between Btz sensitivity and oxidative stress. They suggest

that cells induce a compensatory and protective redox response to block the

cytotoxic effects of PIs, and provide rationale for targeting redox signaling as
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an approach to enhancing the activity of PIs and restoring PI sensitivity to

refractory cells. Further evidence of the promise of targeting redox pathways

for the treatment of MM comes from studies demonstrating the over-

expression of the antioxidant and phase II detoxification enzyme, glutathi-

one S-transferase-pi (GSTP), in >80% of patients with MM and

monoclonal gammopathy of undetermined significance (Petrini et al.,

1995; Stella et al., 2013). These studies showed that GSTP expression

significantly increased following therapy or correlated with therapeutic

response to agents that included Btz, suggesting a role in treatment sensitiv-

ity/resistance. The GSTP gene is located on the long arm of chromosome

11 (11q13), which is a frequently translocated chromosomal locus in MM

due to aberrant and oncogenic Ig heavy-chain gene (IgH, 14q32) transloca-

tions. IgH translocations are one of the most common and earliest oncogenic

events in MM, and the fact that their breakpoints localize to the locus of an

important redox regulatory enzyme with high frequency further implicates

the redox pathway in disease pathogenesis. In MCL, a form of non-

Hodgkin’s lymphoma characterized cytogenetically by the t(11;14) IgH

translocation, GSTP expression is highly expressed in histological samples

(Bennaceur-Griscelli et al., 2004; Thieblemont et al., 2008), and the inhi-

bition of GSTP enhances the activity of Btz (Rolland, Raharijaona,

Barbarat, Houlgatte, & Thieblemont, 2010). Similar examination of GSTP

expression in MM clinical samples from patients with and without t(11;14)

translocations is needed, but these parallel studies inMCL suggest that GSTP

may be a viable molecular drug target for MM and in combination with Btz.

GST family members carry out their protective detoxification process via

the direct conjugation of GSH to target electrophiles. More recent advances

demonstrate that GSTs have broader biological roles unrelated to detoxifi-

cation. GSTP, for example, associates with and regulates the activity of

mitogen-activated protein kinases including the stress signaling kinase

c-Jun N-terminal kinase (JNK; Adler et al., 1999; Wang, Arifoglu,

Ronai, & Tew, 2001). GSTP catalyzes the conjugation of GSH to protein

cysteines (i.e., the process of S-glutathionylation), a posttranslational mod-

ification that alters protein function. S-Glutathionylation influences the

activity of a variety of proteins involved in diverse cellular processes from

the regulation of energy metabolism and calcium homeostasis to signal trans-

duction and redox, indicating the widespread importance of this process

(Tew & Townsend, 2011a, 2011b, 2012). With regard to the proteasome,

Demasi, Shringarpure, and Davies (2001) were first to show that

proteasomal subunits were S-glutathionylated, an effect that specifically
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affected activity of the chymotrypsin-like protease activity in purified

preparations of 20S proteasome extracted from mammalian cells. They

concluded from their study that PIs like lactacystin alter global

S-glutathionylation levels and specifically enhance S-glutathionylation of

the proteasome itself. Additional studies conducted using purified 20S

proteasomes from Saccharomyces cerevisiae showed that S-glutathionylation

of the proteasome was sensitive to redox states and predominantly affected

the chymotrypsin-like protease activity relative to trypsin-like and caspase-

like activities (Demasi et al., 2013). The specific role of GSH and

S-glutathionylation was confirmed as this effect was reversed by enzymes

such as glutaredoxin 2 and other oxidoreductases that catalyze

deglutathionylation, the reverse reaction of GSTs (Silva et al., 2008).

S-Glutathionylation appears to enhance 20S proteasome function by

promoting an “open gate” conformation of the structure (Silva et al.,

2012), thereby enhancing the proteolytic efficiency of the complex. In con-

tradiction to this finding is that oxidative stress was shown to impair the

ATP-dependent activity of the 26S proteasome (Reinheckel, Ullrich,

Sitte, & Grune, 2000), and S-glutathionylation of RPN1 and Rpn2, sub-

units of the 19S regulatory particle of the 26S proteasome, inhibits rather

than enhances proteolytic activity of the proteasome (Zmijewski,

Banerjee, & Abraham, 2009). These seemingly opposing findings may be

reconciled by the fact that oxidative stress is known to disengage the 20S

core particle from the 19S regulatory unit, effectively increasing the pool

of free 20S proteasome, which are capable of degrading proteins in an

ATP-independent manner (Grune et al., 2011; Wang, Yen, Kaiser, &

Huang, 2010). It has been proposed that this regulation evolved as an adap-

tive response to increased oxidative stress, enabling cells to increase their

capacity to degrade oxidized proteins (Demasi et al., 2014, 2013). It is clear

from this collection of studies that changes in redox and levels of

S-glutathionylation have a direct impact on the activity of the proteasome;

however, it is not clear if and how this affects the activity of Btz, or if this

process contributes to the resistance phenotype in MM. Future studies

should address these questions.

Several redox-targeted agents are in preclinical development or are

actively used in the clinic for the treatment of cancer (Tew & Townsend,

2011a, 2011b). GST-targeted agents include the GSTP1 inhibitor

TLK199 (ezatiostat, Telintra), the GSTP-activated prodrug TLK286

(canfosfamide, Telcyta), nitric oxide (NO) generating prodrugs like JS-K,

which has demonstrated promising preclinical activity in MM models and
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synergized with Btz (Kiziltepe et al., 2007), PABA/NO, mimetics of oxi-

dized GSH (GSSG) like NOV-002, and the metal chelator disulfiram

(Antabuse®), which was originally developed in the 1950s to treat alcohol-

ism. Other classes of pro-oxidant chemotherapeutic agents include thiol

reactives like arsenic trioxide (As2O3; a.k.a. ATO), which has been

approved for clinical use in the treatment of acute promyelocytic leukemia

(Wang & Chen, 2008). The combination of ATO and Btz was shown to be

synergistic inMM and other hematological cancer cell lines (Campbell et al.,

2007; Canestraro et al., 2010; Jung, Chen, & McCarty, 2012; Wen et al.,

2010; Yan et al., 2007). A phase I/II study combining ATO, Btz, and

ascorbic acid in heavily pretreated MM patients showed good tolerability

and preliminary signs of efficacy (Berenson et al., 2007), whereas other trials

showed no added benefit of combining ATOwith Btz (Sharma et al., 2012).

Therefore, the benefit of ATO in the treatment of MM and as a enhancer of

Btz activity is not strongly supported, although the statistical power of the

data sample size has been questioned (He et al., 2014). Alternative strategies

for targeting redox to overcome Btz resistance include the inhibition of

mucin 1 C-terminal subunit using a novel cell penetrating peptide inhibitor

of MUC1-C GO-203 (Yin, Kufe, Avigan, & Kufe, 2014). GO-203 was

shown to deplete GSH levels and induce ROS through a mechanism

involving downregulation of the p53-inducible regulator of glycolysis and

apoptosis (TIGAR).

3.3 MDM2 Inhibitors
MDM2 and its human ortholog, HDM2, are E3 ubiquitin ligases best

known for their roles in regulating the stability and activity of p53. Given

the critical tumor suppressor function of p53, dubbed the “guardian of

the genome” (Lane, 1992), the MDM2–p53 regulatory axis is widely

accepted as a promising target for cancer drug development (Chène,

2003). MDM2 directly interacts with p53 and marks it for proteasomal deg-

radation via ligation of ubiquitin tags. Various forms of cellular stress disrupt

the MDM2:p53 interaction resulting in the stabilization and derepression of

p53. The stabilization of p53 is followed by posttranslational modifications

and downstream binding and transactivation of target genes that are involved

in a host of cellular processes including cell cycle arrest and apoptosis

(El-Deiry, 1998; Meek & Anderson, 2009; Vousden & Prives, 2009). In lieu

of a physiological stressor that disrupts MDM2 repression of p53 naturally,

pharmacological approaches have been devised to interfere with this
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interaction with the goal of artificially activating p53 for cancer therapy.

A number of small-molecule drugs have been designed with high affinity

for the p53-binding pocket of MDM2 and act to displace p53 leading to

its stabilization and increased transcriptional activity. In addition to being

a general approach to cancer therapy, there have been several reports that

MDM2 inhibitors are potent Btz sensitizers in MM. Saha and colleagues

observed enhanced activity of Btz in MM cell lines and primary patient

plasma cells that were co-treated with Nutlin3a (Saha et al., 2010), the first

in a class of potent and specific MDM2 inhibitors (Vassilev et al., 2004).

With similar results, work by others (Ooi et al., 2009) found that the com-

bination of Nutlin3a and sublethal concentrations of Btz was effective

against Btz-sensitive MM cells as well as a variety of epithelial tumor types.

Our group showed that in MM cells with acquired resistance to PIs, includ-

ing Btz, MDM2 inhibition is effective molecular strategy for restoring Btz

sensitivity (Stessman et al., 2014). Nutlin3a was also shown to be a augment

the activity of Btz in models of MCL, a form of non-Hodgkin’s lymphoma

that shares cytogenetic anomalies, such as the t(11;14) IgH translocation,

with MM ( Jin et al., 2010; Tabe et al., 2009). In addition to Nutlins,

second-generation MDM2 inhibitors, such as the small-molecule MI63,

enhance the activity of Btz in MM cells (Gu et al., 2014). There are now

several classes of MDM2 inhibitors in development, and human trials com-

bining them with Btz in refractory MM patients will determine the clinical

utility of this approach.

The molecular mechanism(s) that underlie the synergy between MDM2

inhibition and Btz treatment appear to be multifactorial. Given that MDM2

regulates p53 stability through the ubiquitin–proteasome pathway, it is intu-

itive that the combination of these agents would converge mechanistically to

generate a robust anti-MM effect. In support of this theory, early studies

investigating the anti-MM activity of Btz showed that p53 upregulation

and phosphorylation at the Ser15 residue were initiated by Btz treatment

(Hideshima et al., 2003). The Ser15 modification on p53 disrupts the inter-

action with MDM2 (Shieh, Ikeda, Taya, & Prives, 1997), mimicking the

pharmacological activity of MDM2. These results were further supported

by Saha et al. (2010) who reported Btz-induced upregulation of the p53 tar-

get genes, p21/WAF1, MDM2, PUMA, and Bax, effects that were syner-

gistically enhanced by the cotreatment with Nutlin3a. The activity of

Nutlin3a and Btz is most profound in wild-type p53-expressing cells. This

is due to the fact that the effects of MDM2 are mitigated in cells that have
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lost wild-type p53 function, as the stabilization of a p53 protein that lacks

functionality would fail to evoke downstream transcriptional events that

are essential to the activity of p53 pathway activation. This is potentially a

general limitation to the class of MDM2 inhibitors due to the high preva-

lence of somatic p53 mutations in human cancer (Baker et al., 1989;

Hollstein, Sidransky, Vogelstein, & Harris, 1991). Many of these mutations

carry loss of function, interfering with the ability of p53 to bind consensus

DNA-binding sites and induce transcription of target genes. There are,

however, reports that the combination of MDM2 inhibitor and Btz is effec-

tive in p53-deficient cells, implicating p53-independent mechanisms. Our

group showed synergy between Nutlin3a and Btz and especially with

carfilzomib in mutant p53-expressing U266 cells (Stessman et al., 2014).

Two- to threefold higher concentrations of Nutlin3a were required to bring

out the same effect that was observed in wild-type p53-expressing cells, so it

is important to note that p53 mutation, while not an excluding factor, was a

limiting factor. Similar results were reported in p53 mutant MCL cells

through a mechanism involving posttranscriptional upregulation of the

proapoptotic effector NOXA ( Jin et al., 2010; Tabe et al., 2009). In MM

patients, mutations in p53 are significantly less frequent compared to other

tumor types. Genomic studies have shown that p53 mutations are rare in

MM, being observed in only 3% newly diagnosed patients (Chng et al.,

2007; Preudhomme et al., 1992). In addition to point mutations in the

p53 gene that lead to inactivating amino-acid substitutions, complete loss

of one or both p53 alleles through chromosomal deletions is also observed

in cancer. In MM, deletion of the chromosomal arm where p53 is located

(17p) is detected in approximately 10% of newly diagnosed patients and is an

indicator of very poor prognosis (Boyd et al., 2011; Chen, Tai, et al., 2012;

Chen, Qi, Saha, & Chang, 2012; Fonseca et al., 2003; Lodé et al., 2010).

Interestingly, it was shown that in the cohort of patients with 17p deletions,

the remaining allele of p53 was prone to mutation with 37% of patients pre-

senting with mutations (Lodé et al., 2010). By comparison, no p53 muta-

tions were detected in patients with an intact chromosome 17p, an

observation that has been confirmed by others (Chng et al., 2007). So it

seems that loss of p53 function by point mutation or loss of chromosome

17p is a relatively rare event in MM, affecting less than approximately

10% of patients. Thus, p53 deficiency is not likely to be a limiting factor

in MM patients, making the use of MDM2 inhibitors as combination ther-

apies with Btz and other PIs a promising approach.
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3.4 Il-6/STAT3 Signaling Axis
Early studies investigating the role of MM autocrine and paracrine growth

factor and cytokine signaling identified interleukin-6 (IL-6) as a potent

inducer of MM plasma cell growth and survival in cell culture (Kawano

et al., 1988; Klein et al., 1989). Signal transducer and activator of transcrip-

tion 3 (STAT3) signaling is a critical effector pathway downstream of

interleukin-6 receptor (IL-6R) activation (L€utticken et al., 1994;

Wegenka, Buschmann, L€utticken, Heinrich, & Horn, 1993; Zhong,

Wen, & Darnell, 1994). In MM cells, STAT3 functions in both an

IL-6-dependent and -independent manner, and constitutive STAT3 activa-

tion has been associated with oncogenesis and the protection from apoptosis

(Bharti et al., 2004; Bromberg et al., 1999; Catlett-Falcone et al., 1999;

Dalton & Jove, 1999). STAT3 signaling has been implicated in resistance

to several MM therapies (Alas & Bonavida, 2003), and studies have corre-

lated increased STAT3 expression and signaling with Btz resistance.

Enforced expression of the CKS1B gene, a gene mapping to the short

arm of chromosome 1 (1q21), led to induction of the STAT3 phosphory-

lation and resistance to Btz (Shi et al., 2010). STAT3 was connected to Btz

responsiveness in other studies where inhibition of IL-6 signaling using the

IL-6-targeted monoclonal antibody CNTO328 (siltuximab) abrogated

STAT3 activity and enhanced Btz sensitivity in MM cells (Voorhees

et al., 2007). Despite promising preclinical results and the strong molecular

rationale for targeting IL-6 and the IL-6 receptor in combination with Btz,

clinical trials conducted to date have not demonstrated overwhelming ben-

efit for combining the two agents. A recent phase I study of single agent

siltuximab, an IL-6-targeted monoclonal antibody (MAb), in Japan showed

good tolerability and activity in refractoryMMpatients (Suzuki et al., 2015),

although a phase II, double-blind, placebo-controlled trial of siltuximab in

combination with Btz showed no significant improvement in progression-

free survival (PFS) or OS compared to siltuximab plus placebo (Orlowski

et al., 2015). Similar results were observed when siltuximab was added to

a multidrug regimen that included Btz. In this study, too, no improvements

in clinical outcomes in MM patients were seen (San-Miguel, Bladé, et al.,

2014). Other possible approaches include the use of anti-IL-6R targeted

mAbs as opposed to blocking the function of the soluble cytokine.

Tocilizumab, originally named myeloma receptor antibody due to its prom-

ise as anMM therapeutic, is one such molecule. However, there are no pub-

lished results of clinical trials conducted with tocilizumab inMM, alone or in

combination with Btz. The IL-6/IL-6R signaling axis is just one pathway
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that activates STAT3 in MM cells. An alternative strategy is to disrupt

STAT3 signaling through the use of the multikinase inhibitor sorafenib

(Nexavar®), a Raf kinase inhibitor that has multiple molecular targets and

multifactorial antitumor effects in cells including the inhibition of STAT3

signaling (Ramakrishnan et al., 2010). The inhibition of STAT3 by

sorafenib is independent of Raf kinase inhibition, which was determined

byChen et al. (2011) who synthesized sorafenib derivatives that lacked bind-

ing affinity for the Raf kinase domain but retained the capacity to inhibit

STAT3. Inhibition of STAT3 by sorafenib and derivatives was proposed

to occur via activation of the Src homology protein tyrosine phosphatase

SHP-1 (Chen, Tai, et al., 2012; Chen, Qi, et al., 2012), which inhibits

STAT3 phosphorylation. Numerous preclinical studies have demonstrated

a promising anti-MM activity of sorafenib, both as a single agent and in com-

bination with Btz (Kharaziha et al., 2012; Ramakrishnan et al., 2010; Udi

et al., 2013). The most consistently observed molecular event triggered

by sorafenib in these studies was an inhibition of STAT3 phosphorylation

levels and concomitant downregulation of Mcl-1, which is a critical target

gene of STAT3 and a known inhibitor of Btz-induced cell death in MM

cells (Bhattacharya, Ray, & Johnson, 2005; Carpenter & Lo, 2014;

Puthier, Bataille, & Amiot, 1999). Two clinical trials have evaluated

sorafenib in MM patients. The first was a phase I study of sorafenib and

Btz in patients with advanced malignancies (Kumar et al., 2013). Only 1

of the 14 enrolled patients had MM, and efficacy was not evaluated as an

end point in the study, but the regimen was well tolerated. The second trial

was a phase II in refractory MM that evaluated sorafenib as a monotherapy

(Srkalovic et al., 2014). No responses were detected, results that may dis-

courage additional studies evaluating the activity of sorafenib and Btz. Other

strategies to target STAT3 in MM include Janus kinase inhibitors (Li et al.,

2010; Monaghan, Khong, Burns, & Spencer, 2011; Ramakrishnan

et al., 2010; Scuto et al., 2011), STAT3 peptidomimetics (Turkson et al.,

2004), and STAT3-targeted antisense oligonucleotides (Hong et al., 2013).

3.5 Therapeutic Monoclonal Antibodies
The anti-CD38 MAb, daratumumab (JNJ54767414, HuMax® CD38), was

recently granted Breakthrough Therapy Designation by the FDA for MM

that is refractory to a PI and IMiD. CD38 is a cell surface glycoprotein with

cyclic ADP ribose hydrolase activity, but its biological roles are just begin-

ning to be understood. CD38 expressed at high levels in malignant lymphoid

tumor cells and especially in MM plasma cells (Lin, Owens, Tricot, &
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Wilson, 2004), whereas the majority of normal resting lymphocytes and

pluripotent hematopoietic progenitor cells do not express CD38.

A predominant path by which daratumumab kills MM cells is through

antibody-dependent cell-mediated cytotoxicity (ADCC) and complement-

dependent cytotoxicity. Daratumumab also has direct effects on MM cells

and was shown to enhance the activity of existing MM therapies including

Btz (van der Veer et al., 2011). Ongoing clinical studies combining

daratumumab with Btz will determine the utility of this combination in

Btz-resistant patients (NCT02136134, NCT02195479, and NCT01998971)

although it is clear from the clinical data that daratumumab has significant

activity when administered as a single agent in this patient population

(Laubach, Tai, Richardson, & Anderson, 2014).

The anti-CS1 MAb elotuzumab is another promising new agent in the

treatment of MM, displaying positive data in clinical studies, both alone and

in combination with approved drugs like Btz. Cs1 is a cell surface protein

belonging to the Ig superfamily. It was first found to be overexpressed in

malignant plasma cells compared to normal plasma cells (Hsi et al., 2008),

making it a logical target for MM therapy. The anti-MM activity of

elotuzumab is attributed to NK cell-dependent ADCC, direct effects on

MM cell survival and proliferation, and by blocking the adhesion of MM

cells to BMSCs (Collins et al., 2013; Hsi et al., 2008; Tai et al., 2008).

A synergistic interaction between Btz and elotuzumab (formerly HuLuc63),

as Btz enhanced the ADCC killing of MM cells in vitro and enhanced the

anti-MM response in preclinical mouse models (van Rhee et al., 2009).

In a phase I trial of Elotuzumab and Btz in refractory MM patients, the com-

bination showed a remarkable response rate of 48% and in two of three

patients that were refractory to Btz ( Jakubowiak et al., 2012). Other prom-

ising antibody-based therapeutics for the treatment of MM include anti-

body–drug conjugates such as the CD138-targeted antibody BT062

(Indatuximab ravtansine), the anti-B cell maturation antigen-targeted anti-

body GSK2857916 (Tai et al., 2014), and the aforementioned IL-6/IL-6R-

targeted siltuximab and tocilizumab.

3.6 Bromodomain and Other Epigenetic Targets
BET family members (BRD2, BRD3, BRD4, and BRDT) are an exciting

new class of epigenetic drug targets. These proteins facilitate the initiation

and elongation phases of transcription by binding to activated chromatin

at acetylated lysine residues. The recognition of activated chromatin by these
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so-called epigenetic “readers” promotes the recruitment of the RNA poly-

merase II complex to sites of active transcription. Bromodomain inhibitors,

such as JQ1 (Filippakopoulos et al., 2010), were shown to repress the expres-

sion and function of c-Myc, which is one of the most dysregulated onco-

genes in MM (Affer et al., 2014; Kuehl & Bergsagel, 2012; Shou et al.,

2000). The BRD4 bromodomain was found to occupy regions of regulatory

DNA termed super enhancers due to the large size and number of bound

transcription factors compared to normal gene enhancers. Super enhancers

associate with genes that are critical to MM pathogenesis including the

aforementioned c-Myc, IRF4, PRDM1, and XBP-1 (Lovén et al.,

2013). As a consequence of this, disruption of BRD4 binding to super

enhancers by JQ1 is active against MM cell lines and patient plasma cells

(Delmore et al., 2011). Evidence supporting the use of bromodomain inhib-

itors in combination with Btz comes from a clinical study showing that

newly diagnosed MM patients with c-Myc gene abnormalities were more

likely to develop resistance to Btz plus dexamethasone therapy and exhibited

a significantly shorter PFS (Sekiguchi et al., 2014). These findings suggest

that c-Myc activity contributes to Btz resistance, providing rationale for

the use of bromodomain inhibitors as a strategy to block c-Myc activity.

However, a consensus on the extent and precise role of c-Myc in mediating

responsiveness to Btz and PI therapy is debatable. The oncogenic role of

c-Myc is well accepted, but depending on the context, c-Myc can act as

a proapoptotic signal (Fuhrmann et al., 1999). This was shown in the

response to Btz, where c-Myc was shown to regulate NOXA-induced apo-

ptosis following Btz treatment (Nikiforov et al., 2007), and to be a key deter-

minant in Btz-induced apoptosis in MM cells (Chen et al., 2010; Nawrocki

et al., 2008). Based on these studies, the combination of a bromodomain

inhibitor and Btz would be antagonistic rather than synergistic. A caveat

to that conclusion is that while c-Myc expression and activity are highly sen-

sitive to treatment with bromodomain inhibitors, c-Myc is not their sole tar-

get. BET proteins are global regulators of gene transcription and BET

inhibitors affect the recruitment of basal transcriptional machinery to a large

set of genes. In fact, MYC-independent molecular signatures in response to

the quinolone BET inhibitor I-BET151 have been reported (Chaidos et al.,

2014). Two studies support the use of a bromodomain inhibitor in combi-

nation with Btz for the treatment of Btz refractory MM. A recent study

demonstrated synergistic interaction between Btz and the bromodomain

inhibitor CPI203 (Siegel et al., 2014, ASH abstract 4702), and the combi-

nation of JQ1 and Btz was more active than either agent alone in serially
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transplanted Btz-resistant cells from the Vk*MYC transgenic mouse model

of MM (Chesi et al., 2012). Additional studies should further evaluate the

potential of a bromodomain/Btz combination using MM models of resis-

tance in order to establish rationale for the combination in prospective clin-

ical trials in Btz refractory MM patients.

HDAC enzymes are another class of epigenetic modulator with

established potential as anticancer therapeutic targets. HDACs negatively reg-

ulate the acetylation of lysine residues on histone tails to alter chromatin struc-

ture and ultimately gene transcription. Acetylated histones are generally

associated with a less coiled chromatin structure and increased rates of tran-

scription; therefore, HDAC inhibitors, which promote histone acetylation,

act by affecting global transcription in tumors cells and impacting on a variety

of genes and pathways that are important for cell survival, proliferation, apo-

ptosis, differentiation, and metabolism, among others. HDAC inhibitors are

potent anti-MM agents and significantly enhance the effects of Btz. For

example, the pan HDAC inhibitors vorinostat and panobinostat synergized

with Btz in cell culture and animal models of MM (Chesi et al., 2012;

Hideshima, Richardson, & Anderson, 2011; Maiso et al., 2006; Pei,

Dai, & Grant, 2004; Stessman et al., 2013). An original phase I clinical trial

of vorinostat and bortezomib in relapsed patients showed promise including

partial responses achieved in three of nine patients that were refractory to Btz

(Badros et al., 2009). Similar signs of efficacywere reported by other groups in

phase I trials (Weber et al., 2012), although the results of subsequent double-

blind, placebo-controlled studies showed that the addition of vorinostat to

Btz only modestly improved PFS in a large randomized cohort of patients

(Dimopoulos et al., 2013). Furthermore, there was no significant improve-

ment in PFS in the vorinostat versus control group in patients that had

received prior PI therapy. Slightly more positive results were reported for

the combination of panobinostat and bortezomib in a phase Ib study (San-

Miguel et al., 2013) and a large, multicenter, placebo-controlled study of

panobinostat, dexamethasone, and Btz versus placebo, dexamethasone and

Btz (San-Miguel, Hungria, et al., 2014). Based on an approximated

4-month improvement in PFS, the FDA recently granted accelerated

approval of panobinostat. More recent advances include the development

of HDAC6 isoform-specific inhibitors, such as ACY-1215. HDAC6 has

been shown to regulate the formation and function of aggresomes, which

are cellular structures that degrade and clear polyubiquitinated proteins as

an alternative pathway to the proteasome. The combination of HDAC6 gene

knockdown or treatment with the HDAC6 inhibitors tubacin and ACY-

1215 with Btz was found to be synergistic in preclinical models of MM
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(Hideshima et al., 2005; Santo et al., 2012). Clinical trials combining ACY-

1215 and Btz are now in progress and preliminary results show good toler-

ability and evidence of responses in Btz refractory patients (Raje et al., 2012

poster 4061; Vogl, Raje, et al., 2014 poster 4764). Figure 3 provides an over-

view of the various classes of drugs with potential as Btz sensitizing agents.

Figure 3 Bortezomib sensitizing therapeutic agents. (1) MAbs targeting IL-6 or IL-6R
suppress IL-6 signaling and STAT3 activation, an important signaling network in MM
cells. (2) MAbs elotuzumab and daratumumab targeting novel cell surface antigens such
as CS-1 and CD38, respectively, have shown promise in patients with Btz refractory MM
and have the potential to enhance the activity of Btz. (3) STAT3 is an important
prosurvival signal in MM. Strategies to inhibit STAT3 include small-molecule inhibitors
of the Janus kinase (JAK), the upstream activator of STAT3, or other means such as the
use of (4) sorafenib and its derivatives. (5) MDM2 inhibitors are potent Btz sensitizers
that restore Btz sensitivity to resistant cells. (6) BET bromodomain inhibitors are prom-
ising new drugs that disrupt the recruitment of transcriptional machinery to super
enhancers that regulate the expression of MM oncogenes. (7) Next-generation
proteasome inhibitors exhibit clinical activity in a portion of Btz refractory patients.
(8) HDAC inhibitors synergize with Btz in preclinical models, although the clinical activity
of pan HDAC inhibitors (i.e., vorinostat and panobinostat) has been limited. The HDAC6-
selective inhibitor ACY-1215 is currently in clinical trials. (9) Increasing evidence
suggests that alterations in redox signaling are key contributors to the Btz resistance
phenotype, making redox-modulating agents’ prime candidates for trials in Btz refrac-
tory patients. (10) Antiapoptotic Bcl-2 family members confer apoptotic resistance and
reduce the cytotoxic effects of Btz. BH3 mimetic inhibitors, particularly those that block
the activity of Mcl-1, are promising agents for enhancing/restoring the apoptotic effects
of Btz treatment.
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4. CONCLUDING REMARKS

Btz was a revolutionary advancement in the treatment of MM and

remains a cornerstone of MM therapy today. A limitation to Btz is that

the depth and duration of response vary between patients, and all patients

ultimately stop responding due to the emergence of treatment resistance.

Studies have shed light on the molecular mechanisms that drive acquired

resistance to Btz, establishing the rationale for new targeted therapeutic

approaches to be used in combination with Btz. Next-generation PIs retain

activity in a portion of Btz refractory patients. However, in those patients

that are nonresponders, the strategies that enhance the activity of Btz may

be exploited with similar benefit, as Btz and next-generation PIs have the

same molecular target and downstream effector pathways. There has been

a surge of new agents for the treatment of MM over the past 10 years, pro-

viding more treatment options for MMpatients than ever before. Currently,

there are 1907 clinical studies registered with clinicaltrials.gov for MM, and

183 of those trials incorporate Btz in refractory patients. The expanding pre-

clinical literature on molecular mechanisms of resistance and new targets in

Btz-resistant MM will serve as rationale to guide these and future trial

designs. Lastly, this area of research has the potential to deliver biomarkers

and predictive signatures of response to Btz and PI therapy that will person-

alize treatment decisions and guide patient selection for new trials.
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