

Integration of Novel Therapy Into Myeloma Management

- Bortezomib, lenalidomide, thalidomide, pegylated liposomal doxorubicin
- Treatment of relapsed/refractory MM (single agent/combinations)
- Induction/First-line therapy
- Transplant/Maintenance

Bench to Bedside Development of Bortezomib in Myeloma

- 2000 Phase 1 trials: safe and has anti-MM activity
- 2000 Targets MM cell in BM microenvironment
- 2001 Phase 2 trial in relapsed/refractory MM
- 2003 FDA approved: 35% responses (CRs), duration 12 months, clinical benefit
- 2004 Phase 3 trial vs Dex in relapsed MM
- 2005 FDA approved: prolonged TTP and OS
- 2006 High OR and CR rates as initial therapy
- 2006 Novel proteasome inhibitors and combinations
- 2007 Phase 3 trials in newly diagnosed MM
- 2008 FDA approved as initial therapy

Bench to Bedside Development of Lenalidomide

- Preclinical (2000): targets tumor (caspase-8-mediated apoptosis) and microenvironment *in vitro* and *in vivo* in animal model
- Phase 1 trial (25 patients, 2001): MTD 25 mg; favorable toxicity; stable disease or response in 79% of patients
- Phase 2 trials (324 patients, 2002–2003): confirmed responses and decreased neuropathy, constipation, and somnolence compared with thalidomide; Dex improved responses
- Two phase 3 trials (700 patients, 2003–2004): lenalidomide/Dex vs Dex/placebo in relapsed myeloma: FDA approved June 2006 for relapsed myeloma (OR, CR, TTP, OS)
- Phase 2 trial (34 patients, 2005): 91% responses, with 6% CR and 32% nCR as initial therapy for transplant candidates; MPR promising for non-transplant candidates
- Phase 3 trials in newly diagnosed MM

Bortezomib and Lenalidomide Therapy

- Lenalidomide induces caspase-8-mediated apoptosis of MM cells in BM *in vitro* and *in vivo*; Dex (caspase-9) enhances response
- Synergistic MM cell toxicity of lenalidomide with bortezomib *in vitro* and *in vivo* (dual apoptotic signaling)
- Phase 1/2 trials show that majority (58%) of patients refractory to either agent alone respond to the combination
- Phase 1/2 trials show 100% response, with 71% CR/VGPR when used as initial therapy

Richardson PG et al. ASCO 2008.

Multiple Myeloma Research Consortium

1. Member institutions

• Dana-Farber Cancer Institute

• City of Hope

- Roswell Park
- Saint Vincent's Cancer Center
- UHN/Princess Margaret Hospital
- Hackensack U. Medical Center University of Chicago
- Mayo Clinic

Emory University

- H. Lee Moffitt Cancer Center
- Ohio State University
- University of Michigan
- Washington University
- UCSF
 - Indiana University
- 2. Linked by genomics, validation, and clinical trials cores
- 3. GLP tissue bank

Multiple Myeloma Research Consortium

- Goal: Bring the best treatments to patients faster
- Preclinical validation at multiple sites
- Uniform clinical trial agreements
- Cores
 - Genomics/GLP tissue bank: aCGH profiling; portal
 - Validation: PI3K inhibitor SF1126: validation to clinical trial
 - Clinical trials
 - Phase 1: proteasome inhibitor NPI-0052
 - Phase 2: proteasome inhibitor carlfizomib
 - Phase 1/2: combination mTOR inhibitor CCI-779/bortezomib
 - Phase 1/2: combination LBH 589/bortezomib

Phase 1 Clinical Trial of SF1126 in MMRC

- Phase 1 trial of SF1126 in relapsed/refractory MM
- Escalation with overdose control (EWOC) phase 1 design
 - Allows for fewer patients treated with ineffective doses of study drug
- Once MTD defined, 10 patients will be treated with SF1126 and bortezomib, based on preclinical data

Rationally Based Combination Therapies

- Bortezomib and doxorubicin
- Bortezomib, melphalan
- Bortezomib and Hsp90 inhibitor
- Bortezomib and NPI-0052
- Bortezomib and perifosine
- Bortezomib and LBH 589
- Bortezomib and Smac peptides
- Bortezomib and Bcl-2 inhibitor
- Bortezomib and p38 MAPK inhibitor
- Bortezomib and HuLuc63

- Lenalidomide and mTOR inhibitor
- Lenalidomide and anti-CD40 antibody
- Lenalidomide and doxorubicin
- Lenalidomide and HuLuc63
- Lenalidomide and LBH 589
- Lenalidomide and perifosine
- Lenalidomide and bevacizumab
- Lenalidomide and vaccine
- Lenalidomide and bortezomib

Bortezomib and Hsp90 Inhibitor Therapy

- Hsp90 gene and protein overexpressed in MM; bortezomib further upregulates Hsp90 (2002)
- Hsp90 inhibitor + bortezomib induces synergistic cytotoxicity and overcomes bortezomib resistance in vitro and in vivo (2003–2004)
- Phase 1/2 clinical trials show safety and ability of Hsp90 inhibitor to sensitize or overcome resistance to bortezomib (2005–2006) (Richardson et al. ASH 2006)
- Phase 3 trial of bortezomib/Hsp90 inhibitor vs bortezomib in relapsed MM for FDA approval

Bortezomib + Tipifarnib								
Dose Level	Bortezomib Dose (days 1,4,8,11)	Tipifarnib Dose (po b.i.d.)						
-1	0.7 mg/m ²	100 mg	Bortezomib Start Nex					
1	1.0 mg/m ²	100 mg						
2	1.0 mg/m ²	200 mg	Day 1 4 8 11 14 21					
3	1.0 mg/m ²	300 mg	Tipifamib* ────					
4	1.0 mg/m ²	400 mg						

Novel Therapy Combinations With
Bortezomib to Treat Multiple Myeloma

Drug	Drug Class	Results	Author	ASH 2007 Abstract No
Suberoylanilide hydroxamic acid (SAHA) + bortezomib	Histone deacetylase (HDAC) inhibitor + proteasome inhibitor	n=17 4 PR 2 MR 11 SD	Weber et al	1172
		n=16 1 nCR 7 PR 6 SD	Badros et al	1168
Romidepsin + bortezomib	HDAC inhibitor + proteasome inhibitor	n=7 1 CR 3 PR 1 MR	Prince et al	1167

Clinical Trials of Combination Proteasome Inhibitor With Histone Deacetylase Inhibitor in MMRC

Relapsed/Refractory MM

Phase 2 trial of bortezomib and SAHA Phase 1/2 trial of bortezomib and LBH

Novel Therapy Combinations With Bortezomib to Treat Multiple Myeloma

Drug	Drug Class	Results	Author	ASH 2007 Abstract No.
Perifosine (KRX-0401) + bortezomib	Alkyphospholipid + proteasome inhibtor	56% ORR 31% SD	Richardson et al	1170

Phase 1 MMRC Study of 3 Drugs Devices and the provided and the p

Phase 1 MMRC Study of 3 Drugs Perifosine, Dexamethasone, Lenalidomide
Relapsed myeloma
Trial now completed within MMRC
Well tolerated, with responses in the majority of patients

Conclusions and Future Directions

- 1. A new treatment paradigm targeting both the tumor cell and its microenvironment has already markedly improved OR, CR, EFS, and OS
- 2. Ongoing oncogenomic and proteomic studies are informing clinical protocol design and identifying novel therapeutic targets
- Future molecularly based, rationally designed combination therapies (ie, immunomodulatory drug, proteasome inhibitor, Hsp90 inhibitor, HDAC inhibitor, and MoAb) will achieve durable CR in the majority of patients

