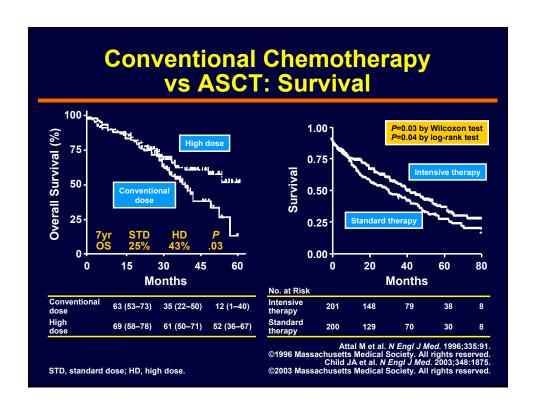


Should All Patients Who Achieve Complete Response Receive a Transplant?

William Bensinger, MD
Fred Hutchinson Cancer Center
University of Washington
Seattle, Washington

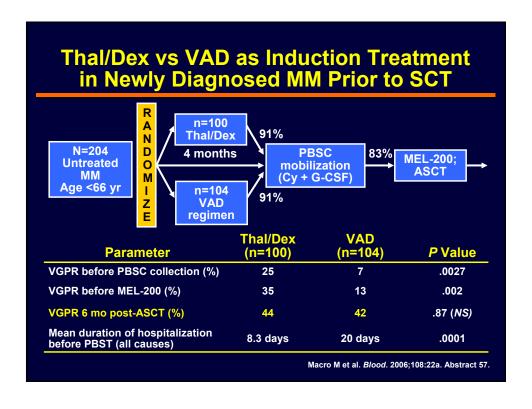

1

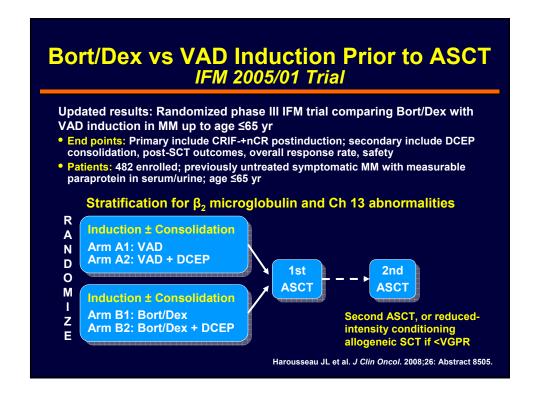
What We Know

- High-dose therapy + auto SCT (ASCT) increases complete response (CR) rates
- CR correlates with survival
- New drugs improve induction CRs → higher CR rates after ASCT
- Tandem ASCT seems to benefit a subgroup of patients
- Post-ASCT maintenance may improve responses, and increase EFS, OS
- Some new drugs can affect stem cell yields
- Reduced-intensity allografting may prolong EFS, OS after ASCT

What We Don't Know

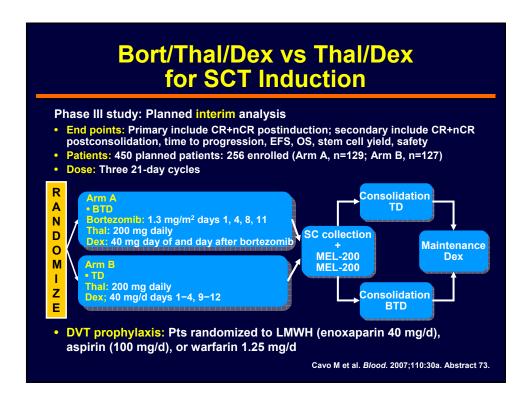
- Do the higher response rates observed after noveldrug combinations + ASCT improve survival?
- Which drug combinations are optimal for patients proceeding to transplant?
- Are tandem ASCTs beneficial after novel induction therapies?
- If your patient achieves a CR after novel induction therapies, is a transplant "optional"?
- Can allografting overcome any of the negative prognostic features?

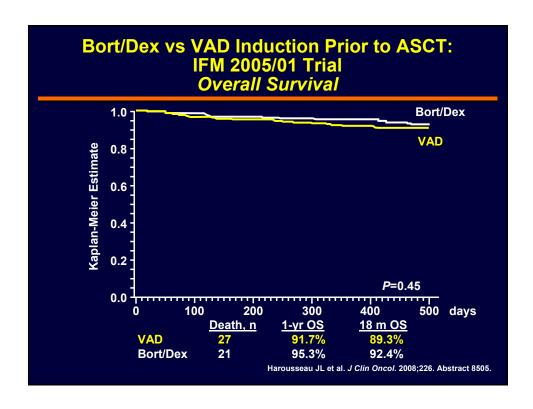



Single vs Double Autografts for MM

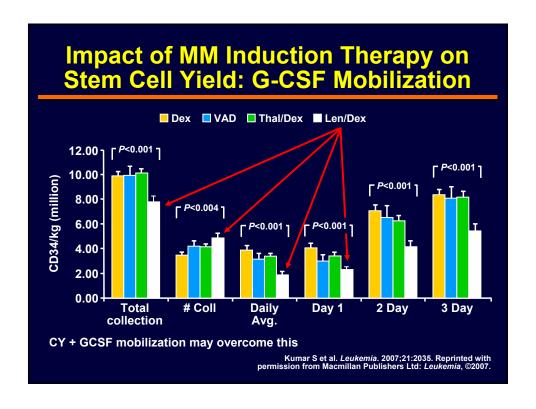
- Attainment of CR, near CR, VGPR is important for survival benefit
- Only 1 trial showed overall survival benefit for tandem tx vs single tx
- Patients in CR / near CR / VGPR after
 1 autograft do not benefit from a second autograft
 - Confirmed in 2 trials
- Only patients with PR or stable disease (SD) appear to derive benefit from a second autograft

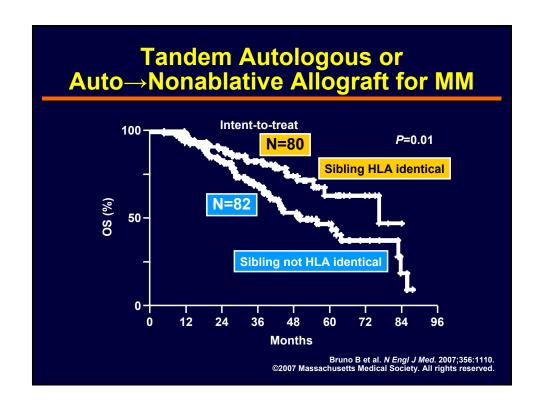
New Induction Therapies Prior to Autologous Transplant

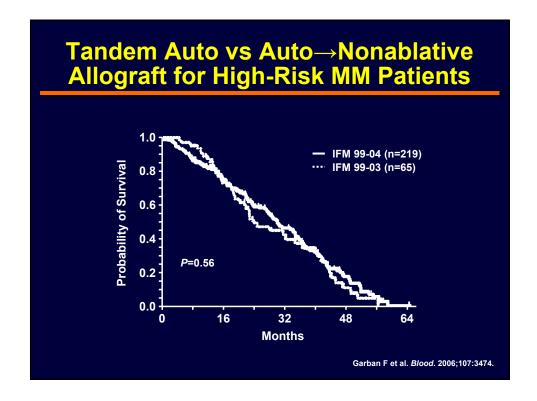

- Thalidomide, dexamethasone
- Bortezomib, dexamethasone
- Bortezomib, thalidomide, dexamethasone
- Lenalidomide, dexamethasone
- Cyclophosphamide, bortezomib, dexamethasone
- Bortezomib, peg-doxorubicin, dexamethasone
- Bortezomib, lenalidomide, dexamethasone

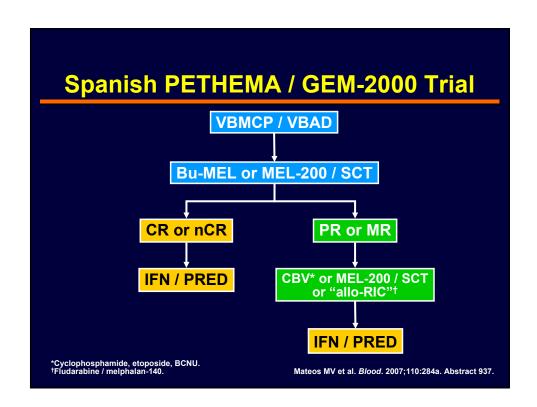

	Bort/Dex	vs VAD	
	Response* to	Induction	
Intention-to-treat analysis	VAD (n=219)	Bort/Dex (n=223)	P Value
CR	3%	10%	0.004
CR + nCR	8%	19%	0.0004
≥VGPR	19%	47%	<0.0001
≥PR	66%	83%	<0.0001
	Response* to C	onsolidation	
Intention-to-treat analysis	No DCEP A1 + B1 (n=222)	DCEP A2 + B2 (n=220)	<i>P</i> Value
CR +nCR	16%	17%	0.73
VGPR	33%	36%	0.47

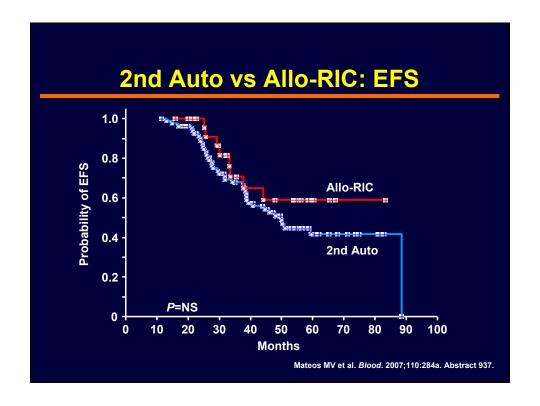
	Bort/Dex	vs VAD			
Post-First ASCT Response					
Intention-to-treat analysis	VAD A1 + A2 (n=219)	Bort/Dex B1 + B2 (n=223)	<i>P</i> Value		
CR + nCR	23%	35%	0.0063		
≥VGPR	44%	63%	<0.0001		
≥PR	79%	84.3%	NS		
Actual SCT performed	VAD A1 + A1 (n=185)	Bort/Dex B2 + B2 (n=197)	<i>P</i> Value		
CR + nCR	28%	40%	0.01		
≥VGPR	52%	72%	<0.0001		
PR	94%	95%	NS		

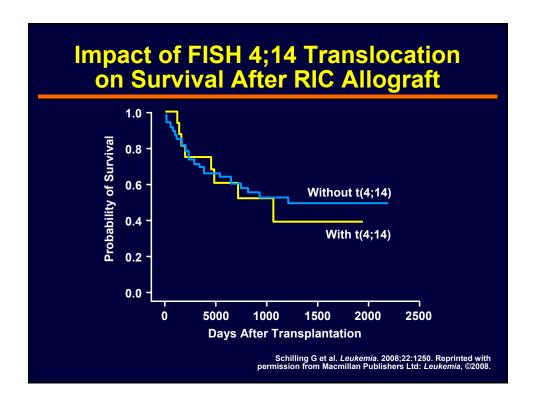

Response	Induction			Post-SCT #1	
	TD (n=127)	BTD (n=129)	<i>P</i> Value	TD (n=79)	BTD (n=74)
CR + nCR	9%	36%	<0.001	28%	57%
≥VGPR	27%	60%	<0.001	54%	77%
PR	53%	33%		_	_

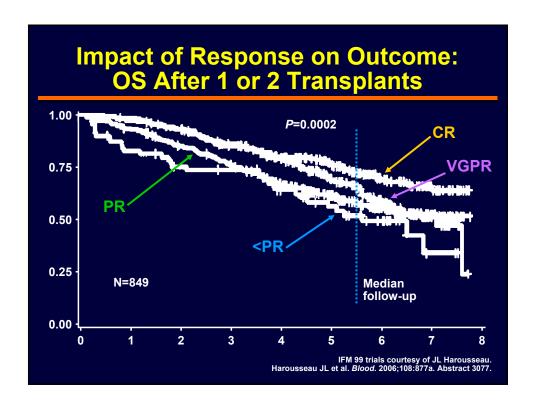

- Thus: ASCT can improve the response rates after induction with some suboptimal regimens (ie, VAD vs Thal/Dex)
- ASCT can further improve the response rates after induction with more optimal regimens (ie, Bort/Dex vs VAD; Bort/Thal/Dex vs VAD)
- Will this affect survival? (unknown)




E4A03: Lenalidomide + High-Dose Dexamethasone (RD) vs Lenalidomide + Low-Dose Dexamethasone (Rd) as Primary Induction Therapy for Newly Diagnosed MM							
Results of Primary Therapy Beyond 4 Cycles With Rd (Landmark Analysis)							
Factor/Result	Primary Rd (N=142)	All Rd Except SCT Group (N=181)	SCT Group (N=85)	ITT Rd Arm (N=222)			
Median age, yr	66	64	5 9	65			
>PR @ 4 cycles	86%	74%	70%	69%			
1-yr survival	99%	96%	99%	96%			
2-yr survival	93%	88%	93%	88%			
	Ra	ajkumar SV et al. <i>J</i>	Clin Oncol. 2008;	.26. Abstract 8504.			


Post-ASCT Maintenance					
	N	Thal Dose	CR Rate	PFS (yr)	os (yr)
Barlogie * <i>NEJM</i> 2006	668	400	62% vs 43%	56% vs 44% (5)	ns
Attal <i>Blood</i> 2006	597	400	67% vs 55%	52% vs 36% (3)	87% vs 77% (4)
Abdelkefi [†] <i>Blood</i> 2008	195	100	68% vs 54%	85% vs 57% (3)	<mark>85%</mark> vs 65% (3)
Spencer ASH 2006	243	200 ‡	24% vs 15%	63% vs 36% (2)	90% vs 81% (2)





Should All Patients Who Achieve a Complete Response to Induction Therapy Proceed to Autologous Transplant?

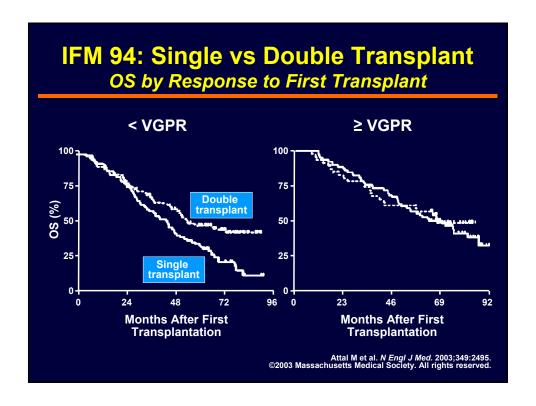
Pro-Transplant (ASCT)

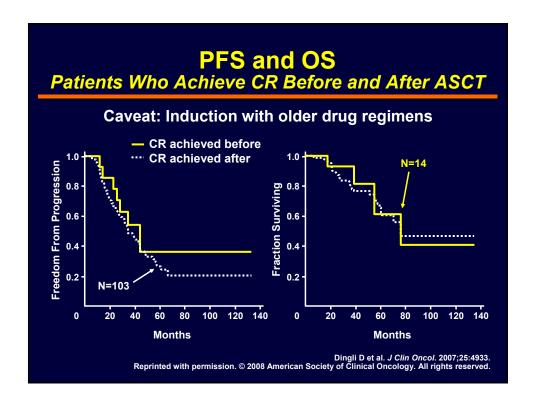
- CR is a marker for survival
- Novel drugs alone may or may not produce a "depth of remission" as good as ASCT
- Novel drugs may eliminate "high-risk" cells that lead to relapse, BUT data are lacking at present that suggest novel drugs without transplant improve survival. THUS, ASCT may further improve remission durability
- Early trials of novel drugs prior to ASCT demonstrate added value of ASCT on response

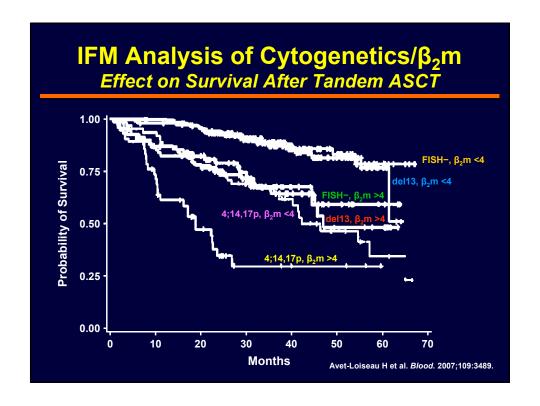
		acro I 2006	Harousseau ASCO 2008		Cavo ASH 2007	
	VAD	Thal/D	VAD	Bort/D	Thal/D	Bort/Thal/D
Induction ≥VGPR	7%	25%	19%	47%	27%	60%
Transplant ≥VGPR	42%	44%	44%	63%	54%	77%

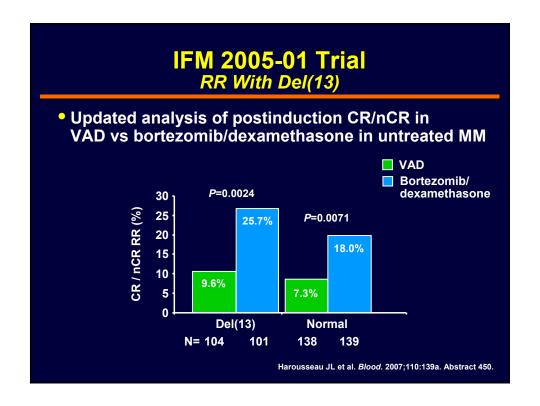
ASCT Improves Responses After Traditional or Novel Induction

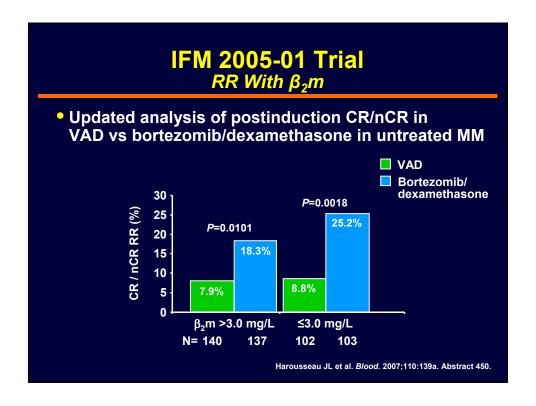
		Harousseau ASCO 2008		Cavo H 2007
	VAD	Bort/D	Thal/D	Bort/Thal/D
Induction ≥nCR	8%	19%	9%	36%
Transplant ≥nCR	23%	35%	28%	57%

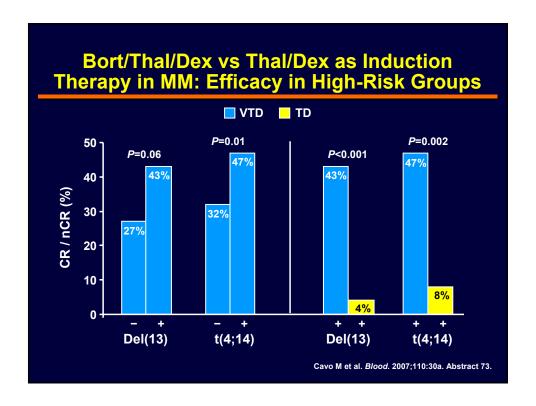

Harousseau JL et al. J Clin Oncol. 2008;26: Abstract 8505. Cavo M et al. Blood. 2007;110:30a. Abstract 73.

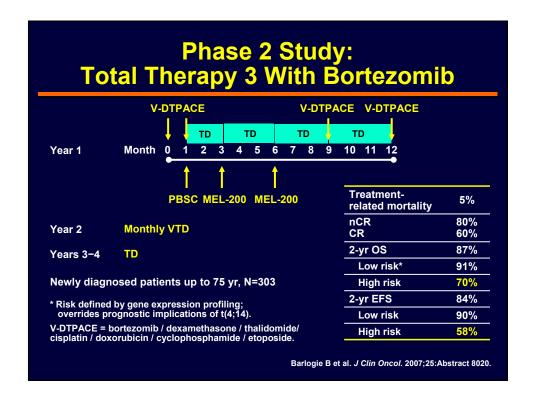

Con-Transplant (ASCT)

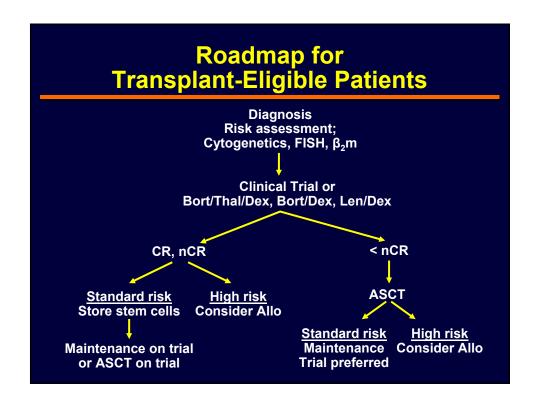

CR is a marker for survival


BUT


- Tandem ASCT does not benefit VGPR or better patients
- Retrospective studies suggest patients in CR after induction DO NOT BENEFIT from ASCT
- Novel drugs may eliminate "high-risk" cells that lead to relapse, making ASCT superfluous
- "High risk" patients clearly have less benefit from ASCT







Conclusions

- ASCT remains as a standard of care, but its relevance with novel drugs is less clear
- Novel-drug combinations for front-line therapy confirm higher rates of ≥VGPR after induction AND after ASCT, but their effect on OS with or without transplant is unknown
- Very few trials compare novel-drug regimens with each other
- Trials are needed to compare outcomes of novel induction regimens ± ASCT
- Maintenance or RIC allografts may improve results

