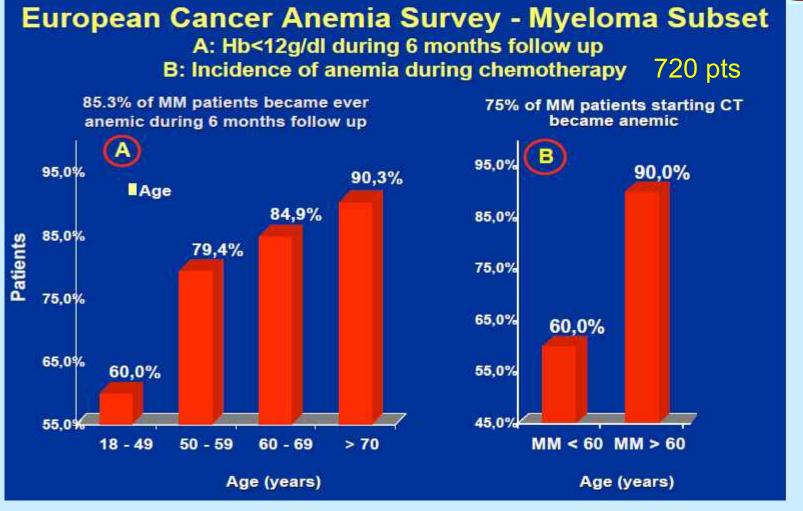


MANAGEMENT OF ANEMIA AND NEUROLOGICAL COMPLICATIONS IN MULTIPLE MYELOMA

Eirini Katodritou M.D.


Hematology Department, Theagenion Cancer Center, Thessaloniki, Greece

Prevalence of anemia in MM

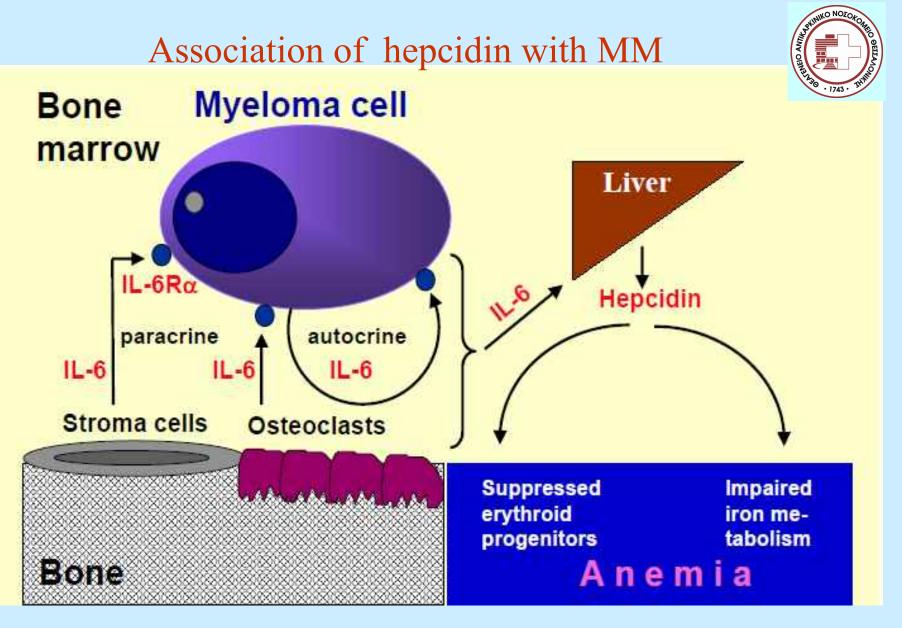
Study	# of Pts	Hb	Prevalence
Kyle, 1975	869	<12 g/dL	73%
Ludwig, 1994	292	<12 g/dL	72%
San Miguel, 1995	120	<10.5g/dL	68%
Zervas, 2009 (unpublished data)	503	<12 g/dL	77%

Grade 3+4: 22%, 6.4%, 41% (CT, RT, CT/RT)

Ludwig H, et al. Eur J Cancer, 2004; 40: 2293-2306 Birgergard G, et al Eur J Haematol 2006; 77: 378-386

Treatment-related anemia

in the era of novel agents and combinations


Study	Regimen	Anemia grade 3+4 (%)
Facon, Lancet, 2007	MP vs MPT	14 vs14
Palumbo, Lancet, 2006	MP vs MPT	4 vs 3
Richardson (SUMMIT) bjh, 2003	Vel ± Dexa	8
Richardson (APEX), Nejm, 2005	Vel vs Dexa	10 vs 11
San Miguel, (VISTA), Nejm, 2008	MP vs MPV	28 vs 19
Palumbo, Blood, 2007	VMPT	16
Rajkumar, Blood, 2005	RD	6
Dimopoulos (Weber), Nejm, 2007	RD vs Dexa	9 (13)
Knop, Blood, 2009	RAD	16.5
Kyriakou, Davies, Morgan, bjh, 2005, 2007, 2007	CDT, CDV, CDR	Not reported

Pathogenesis of anemia in MM

- □ Bone marrow infiltration
- Renal insufficiency
- □ Chemo/radiotherapy
- Hemolysis
- □ Hypervolemia, infection, nutritional deficiencies
- □ Wnt-inhibitors-induced suppression of hematopoiesis
- Anemia of Chronic disease
- ✓ Inadequate levels and blunted response to endogenous EPO
- ✓↑ Pro-inflammatory cytokines (IL-1, TNFa, IFN-γ, IL-6)
- ✓ J Number of erythroid precursors
- ✓ FAS-L/TRAIL induced apoptosis
- Dysregulation of iron metabolism induced by the iron regulator, hepcidin

Mittleman M. Clin Lymphoma, 2003; 4: 23-29 Weiss G & Goodnough L. N En J Med, 2005; 352: 1011-1023 Stewart JP & Shaughnessy JD. J Cell Biochem, 2006; 98: 1-13 Silvestris F, et al. Blood, 2002; 99: 1305-1313

Nemeth E, et al. Blood, 2003; 101: 2461-2463 Nemeth E, et al. J Clin Invest, 2004; 113: 1271-1276 Dallalio G, et al. Blood 2005; 107: 2702-2704

>Hepcidin mRNA is up-regulated by both IL-6 dependent and independent mechanisms in MM and it may play an etiological role in the development of anemia

 Baseline serum hepcidin is negatively correlated with anemia and significant disease indicators in MM (ISS, β2M)

Anti-myeloma treatment and more profoundly, IMiDscombinations significantly reduced hepcidin

✓ Baseline serum hepcidin is an independent predictor for response to ESAs in anemic cancer patients (including MM)

Sharma S, Nemeth E, Chen YH, et al. Clin cancer Res, 2008; 14: 3262-3267
 Katodritou E, Ganz T, Terpos E, et al. Am J Hematol, 2009; 84: 524-526
 Ukarma L, Johannes H, Beyer U et al. Clin Chem, 2009; 55: 1354-1360

Management of anemia in MM

Disease control

> Erythropoiesis-stimulating agents (ESAs)

≻IV iron supplementation (monotherapy?)

➢RBC-transfusions

Prospective Randomized studies with ESAs

KO NOE

in Myeloma (MM) and Lymphomas (L)

	In wrycroma (wnwr) and Lymphomas (L)						
Author (year)	Response criteria	# of pts	ESAs	Duration of ESAs (wks)	Response %		
Cazzola (1995)	Hb≥2g/dl	146(MM/L)	Epoetin β	8	62		
Garton (1995)	Hct=38%	25 (MM)	Epoetin a	24	45		
Dammaco (2001)	Hb≥2g/dl	145 (MM)	Epoetin a	12	58		
Osterborg (1996)	Hb≥2g/dl No transfusion	65(MM)	Epoetin β	24	60		
Osterborg (2002)	Hb≥2g/dl No transfusion	349(MM/L)	Epoetin β	16	67		
Hedenus (2003)	Hb≥2g/dl No transfusion	344 (MM/L)	Darbepoetin a	12	60		
Cazzola (2003)	Hb≥2g/dl No transfusion	241 (MM/L)	Epoetin β	16	72		

Response to ESAs is independent from disease response Demetri GD, et al. J Clin Oncol, 1998;16:3412-3425

≻50-60% reduction in transfusion need

Dammaco F, et al. Br J Haematol, 2001; 113: 172-179 Osterborg A, et al. J Clin Oncol, 2002; 20: 2486-2494 Hedenus M, et al. Br J haematol 2003; 122: 394-403

Improvement of QoL? is controversial

Osterborg A, et al. J Clin Oncol, 2002; 20: 2486-2494 Straus DJ, et al. Cancer, 2006; 107: 1909-1917

ESAs unresponsiveness: ~30% (Functional Iron deficiency) Goodnough L. Exp Hematol, 2007; 35: 167-172

Predictors for response? Necessary. None established Littlewood T, et al. Oncologist, 2003; 8: 99-107 Katodritou E, et al. Br J Haematol, 2008; 142: 3-10

Prognostic models for response to ESAs

Author	Ludwig	Henry	Cazzola	Cazzola	Katodritou
	(1994)	(1995)	(1995)	(1996)	(2007)
# of pts	76	132	48	48	41
	Solid/MM/	Solid	MM/	Solid/MM/	MM/
Neoplasm	Lymphomas		Lymphomas	Lymphomas	Lymphomas
Response (%)	50	55	65	58	66
Prognostic model	EPO<100mU/ml Hb≥0.5g/dl (wk2)	retics≥ 40000/µL Hb≥0.5g/dl (wk2)	Hb≥0.3g/dl (wk2) b. EPO O/P < 0.9	sTfR>25% (wk2) b.EPO <50mU/ml	Hypochromic erythrocytes <5% alone or in combination with retics wk2> 50,000/µL
Sensitivity (%)	42	19	97	88	81
Specificity (%)	100	88	76	95	93
PPV(%)	100	67	88	96	95
NPV(%)	62	47	93	88	72

	ESA	s and IV	iron suppler	mentation	WIND NOZOFOHIO BEEANO
Study	# of pts	Diagnosis	Iron status	Randomisation	
Aurbach (2004)	157	solid	Ferr<450ng/mL	Yes (ESAs vs ESAs +oral iron vs ESAs + IV iron)	68% vs 36 vs 25
Katodritou (2007)	41	MM/L	Stainable iron	No (ESAs+ IV iron non- responders)	83% after IV iron
Hedenus (2007)	67	LPDs	Stainable iron	Yes ESAs vs ESAs+ IV iron	93% vs 53%
Henry (2007)	187	Solid	Ferr>100ng/mL TSAT>15%	Yes (ESAs vs ESAs+ oral vs ESAs+ IV iron)	73% vs 45% vs 41
Bastit (2008)	396	Solid	Ferr>10ng/mL TSAT>15%	Yes ESAs ± oral iron vs ESAs+ IV iron	86% vs 73%
Pedrazzoli (2008)	149	Solid	Ferr>100ng/mL TSAT>20%	Yes ESAs vs ESAs+ IV iron	77 vs 62

IRE indices at baseline	Sensitivity %	Specificity%	PPV%	NPV%	Accuracy%
HYPO% (≥5%)	50*	100	100	79	83
TSAT% (<20%)	55	28	60	25	46
sFerritin (<100ng/ml)	36	85	56	72	68

* HYPO% sensitivity increases over time up to 90%

Katodritou E, et al. Ann Hematol, 2007; 86: 369-376 Katodritou E, et al. Hematologica 92: (S 1): 28, 2007

Iron supplementation improves anemia response to ESAs, however, more firm Iron-restricted erythropoiesis (IRE) criteria are needed in order to avoid its possible adverse effects

Katodritou E, et al. Am J Hematol, 2008; 83: 512-523

IV iron monotherapy in MM Anemic MM patients with IRE planned to receive anti-myeloma therapy IV iron (concomitant with anti-Treatment for MM *myeloma treatment)* 1) Tumor reduction (+IL6 and other cytokines) 2) Improvement of erythropoietic activity **RBC** hemoglobinization Facilitating iron delivery Hepcidin reduction and utilization (iron not trapped in the macrophages) Anemia recovery

Katodritou E, et al. Greek Myeloma Study Group, 2009

What about safety of ESAs use in cancer?

ESAs and risk for VTEs

YES: ✓ Meta-analysis in 9,353 cancer patients RR: 1.67 Bohlius J, et al. J Natl Cancer Inst, 2006; 98: 708-714

✓ Meta-analysis in 8,172 cancer patients RR: 1.57 Bennet AM, et al. JAMA, 2008; 299: 914-924

✓ Pooled analysis from all randomized studies of darbepoetin including 2,122 cancer patients with chemotherapy-induced anemia HR: 1.57
 Ludwig et al, J Clin Oncol, 2009; 27: 2838-2847

NO

✓ Meta-analysis in 2,301 cancer patients: non-statistical trend for VTEs (higher risk in patients with higher Hb levels)

Aapro M, et al. Br H Cancer, 2008; 99: 14-22

Adverse outcomes associated with ESAs

Study	Diagnosis	# of nts enrolled	ESAs	Adverse
Study	Diagnosis (Treatment)	<pre># of pts enrolled (target #)</pre>	ESAS	Outcome
Henke 2003	Head & neck (RT)	351	Epoetin beta	HR for progression:1.69 (p=0.007); for death: 1.39 (p=0.02)
Leyland-Jones 2005	Breast (on-therapy)	939	Epoetin alfa	1y survival vs placebo: 70% vs 76% (p=0.01)
Wright 2007	Lung (off-therapy)	70 (300)	Epoetin alfa	OS vs placebo: 63 vs 129d HR for death: 1.84 (p=0.04)
Goldberg 2007	Head & neck (RT)	522 (600)	Darbepoetin	10% increase in progression (p=0.01); trend towards decreased survival (p=0.08)
Smith 2008	Solid &Non- myeloid hematological (off-therapy)	989	Darbepoetin	Shorter OS. HR for death: 1.30 (p=0.008) HR for death for 119 pts MM/L> 2
Lymphoid Cancers anemia study	LPDs (on-therapy)	344	Darbepoetin	Shorter OS. HR for death:1.37 (p=0.04)

FDA in the USA: ESAs after 2008 safety review

- On July 31, the FDA orders safety-related changes for anaemia drugs
- ESAs are not indicated for patients receiving myelosuppressive therapy when the anticipated outcome is cure
- ESAs should not be initiated if the patient's haemoglobin is above 10 g/dL

ASH/ASCO recommendations for ESAs use in cancer

≻ESAs could be used only if Hb≤10g/dL

Target hemoglobin should not exceed 12g/dL

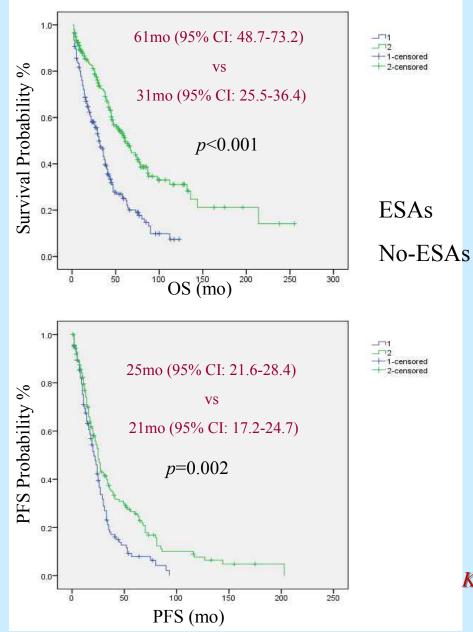
➢In non-myeloid hematological malignancies ESAs are recommended only in case that anemia does not improve over treatment

≻Transfusion is still an acceptable therapeutic option

➤The risk for VTEs should be carefully weighted especially in MM patients who often receive IMiDs and dexamethasone or anthracyclines

Recombinant human erythropoiesis-stimulating agents and mortality in patients with cancer: a meta-analysis of randomized trials

ESAs treatment in cancer patients increased on-study mortality by 17% and worsened overall survival by 6%.


≻For patients undergoing chemotherapy the increase was less pronounced, but could not be excluded.

➢Risks of ESAs must be balanced against benefits depending on the clinical circumstances of the individual patient.

No conclusive evidence for effect modification by patient level characteristics (age, sex, Hb and Hct at baseline, Hb ceiling, type/stage of tumor) or study level characteristics (anticancer treatment, ESA treatment schedules, etc) for the outcomes tested.

Bohlius J, et al. Lancet, 2009; 273: 1532-1542

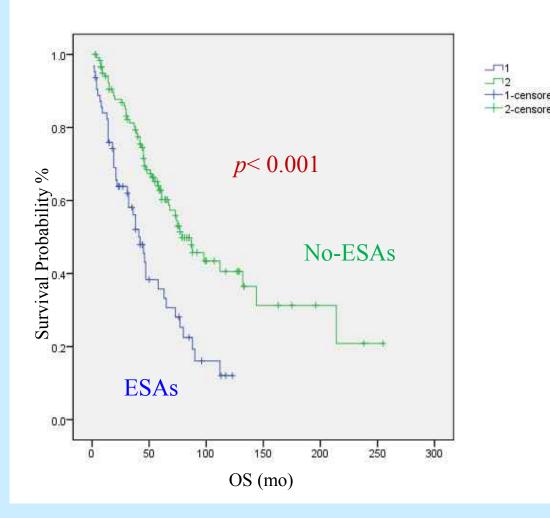
ESAs and survival in newly diagnosed MM patients

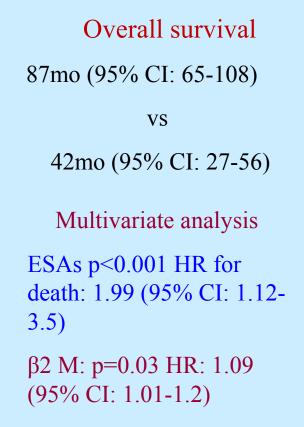
Multivariate analysis

ESAs: p=0.01 (HR for death: 1.5, 95% CI: 1.07-2.02)

Age: p<0.001 (HR: 1.032, 95% CI: 1.04-1.09)

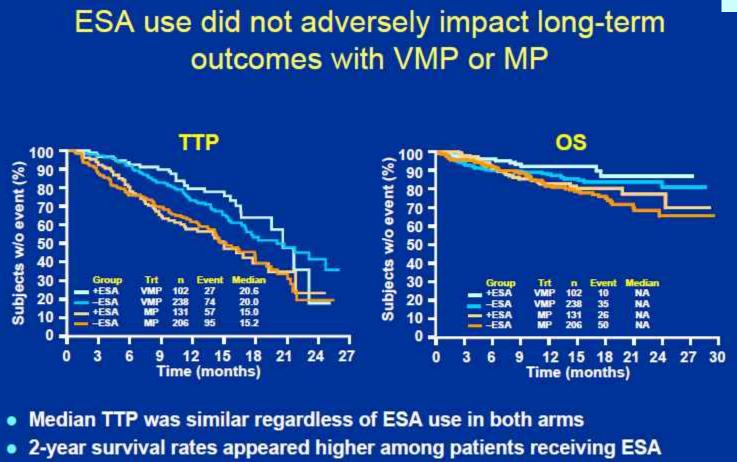
β2 M: p<0.001: (HR: 1.07 (95% CI: 1.04-1,09)


Median follow-up 76 (2-255)

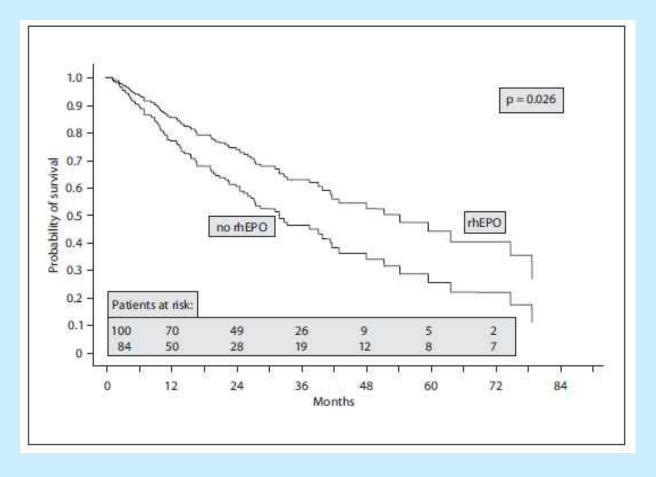

Katodritou E, et al. Am J Hematol 2008; 83: 697-701

(2009 updated)

Survival according to ESAs administration (ISS I)



Progression-Free Survival (p=0.01) ESAs arm: 24mo (95% CI: 16-32mo) No-ESAs arm: 29mo (95% CI: 21-37mo)

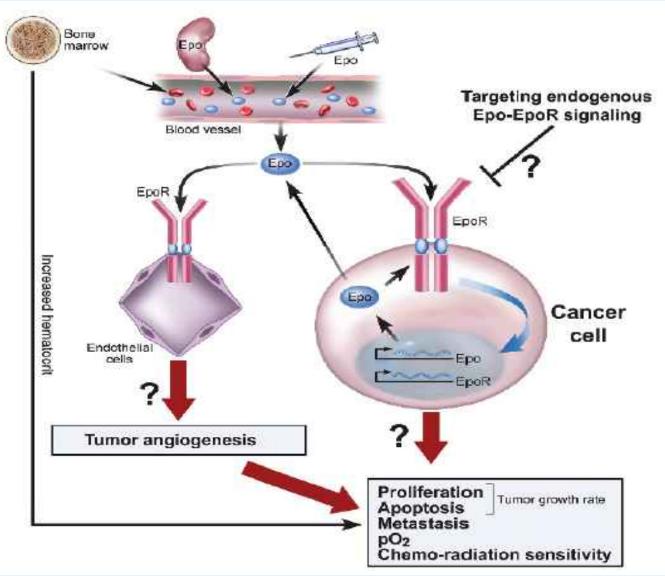


ESA can be safely administered with VMP/MP for the treatment of anemia in frontline MM patients

Richardson PG, et al. Blood, 2008;112: abstr 1741

Adjusted survival for pts in SWOG stage II, III and IV (no difference in the unadjusted survival (p=0.4).

Baz R, et al. Acta Haematologica, 2007; 117: 162-167



- Survival studies and meta-analyses have limitations (mixed populations, different settings, not comparable patients characteristics, magnification of the effects of some trials)
- \checkmark "No inferior survival" is not a sufficient end-point
- ✓ A relatively long follow-up is required
- ✓ Need for prospective studies to answer this query
- ✓ Reasonable to avoid ESAs in newly diagnosed MM patients in whom physicians follow an "intention to cure" strategy

Katodritou E, et al. Cancer Treat Rev, online September 2, 2009 Glaspy J. Nat Rev Clin Oncol ,2009; 6: 500-502

Possible mechanisms of ESAs-induced tumor promotion? Nothing has been proved!!

Hardee M, et al. Clin Cancer Res, 2006; 12: 332-339

Bone marrow microvessel density (MVD) in 84 newly diagnosed MM patients on conventional treatment with or without ESAs administration

362

o²³²

334

YES

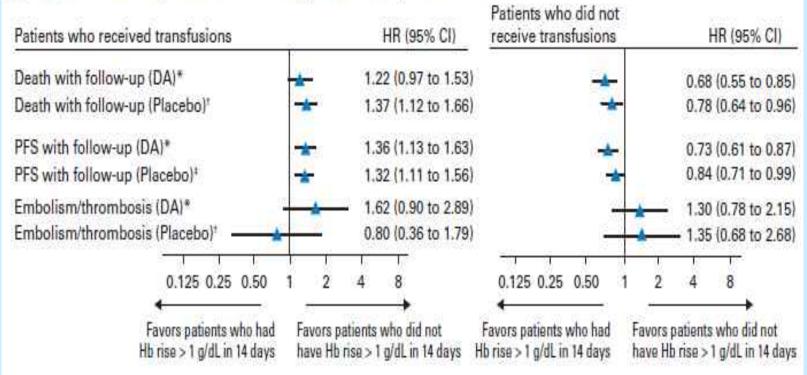
ESAs

Baseline MVD MVD at re-evaluation % change of MVD 30,00-30,00-100.00 p=0.03 p=0.31 25,00-25.00-50.00 -20,00-20,00-....-0.00% 15,00-15,00-10,00-10.00--50,00 -5,00-5.00 283 0 0388 o²²² 0,00-0.00--100.00 -YES YES No ESAs No ESAs **ESAs** No ESAs **ESAs**

MVD increased in 15 pts (13/ESAs 2/noESAs) (p=0.03)

ESAs arm: 14.5% (-410%-85.6%) CD34(+) microvessels/ mm² No ESAs arm: 24.9% (-36%-76.6 %CD34(+) microvessels/ mm²

p=0.04


Katodritou E, Terpos E, et al. 2009, submitted

NO

RBC transfusions

B Impact of Hemoglobin Increase > 1 g/dL in 14 Days on Adverse Outcomes

RBC transfusions and the rates of Hb increase owing to transfusions were associated with increased risk for disease progression and death

Ludwig et al, J Clin Oncol, 2009; 27: 2838-2847

Conclusions

Anemia is a frequent and serious adverse event in MM

 \geq ESAs are established in the treatment of anemia in MM, however, their use should strictly follow the international guidelines

➢IV iron supplementation improves response to ESAs, however, firm criteria of IRE are necessary (IV iron monotherapy under investigation)

The need for predictors of response to ESAs and iron has not abated

≻Hepcidin implication in the pathogenesis of MM needs further investigation

ESAs should preferably be avoided if physicians follow an "intention to cure" strategy (novel agents, ABMT)

► RBC-transfusions is an acceptable therapeutic option, if used with caution

MANAGEMENT OF NEUROLOGICAL COMPLICATIONS IN MULTIPLE MYELOMA

Causes of polyneuropathy in myeloma: ≻Compressive

Radiculopathy Spinal cord compression Base-of-skull tumors

➢Infiltrative

Leptomeningeal infiltration Numb chin syndrome

➢Autoimmune or inflammatory

Peripheral neuropathy

➢Drug-related

Peripheral neuropathy

≻Others

Hypercalcemia, uremia hyperviscosity Diabetes Melitus, B12 insufficiency

Radiculopathy

Causes: Root compression, spinal cord or cauda equina compression due to: lytic bone lesions, vertebral plasmacytomas, foraminal stenosis (bone fracture)

• Symptoms: Back pain, root pain, weakness or paralysis of the lower extremities

Diagnosis: MRI

• Action: if no spinal cord compression : corticosteroids and systemic treatment. In case of soft-tissue component causing the stenosis, radiation is beneficial.

Silberman J. & Lonial S. Hematol Oncol, 2008; 26: 55-65 Spinazze S, et al. Crit Rev Oncol Hematol, 2005; 56: 397-406 Dispenzieri A & Kyle RA. Best Prac & Res Haematol, 2005; 18: 673-688

Spinal cord compression

≻Usually involves thoracic cord (5% during the course of MM)

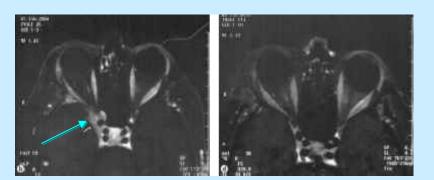
- Causes: extension of a myelomatous lesion to the extradural area
- Symptoms: back pain (radicular features), weakness, ataxia, spasticity, paraplegia

✓ *Compression of the cauda equina:* pain in the buttocks, loss of sensation in the saddle area, weakness of the legs

Diagnosis: MRI (CT scan?)

• Action: immediate administration of high-dose dexamethasone, radiation (4.000cGy fractionated over 4wks)

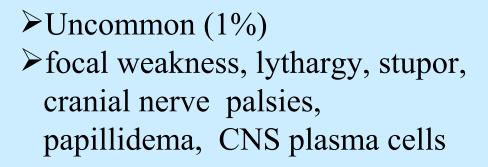
✓ surgical decompression: beneficial if there is a pathologic compression fracture


Silberman J. & Lonial S. Hematol Oncol, 2008; 26: 55-65 Spinazze S, et al. Crit Rev Oncol Hematol, 2005; 56: 397-406 Dispenzieri A & Kyle RA. Best Prac & Res Haematol, 2005; 18: 673-688

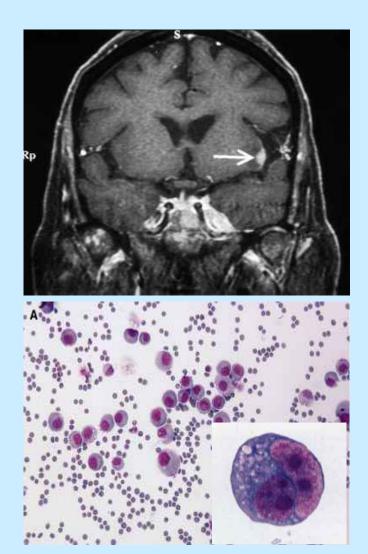
Base-of-skull plasmacytomas

- ≻Rare, usually occur during disease progression
- Involvement of cranial nerves (e.g. 6th, 8th)
- Numb chin syndrome: sensory disturbances (mental nerve or inferior alveolar nerve)
- Lytic lesion in the mandible (10%): mandibular nerve
- Orbital involvement: proptosis, visual loss occasionally

Diagnosis: MRI (CT scan)


➤Treatment: If anatomically suitable, surgery+radiation (50.000cGy), otherwise radiation+systemic therapy, gammaknife radiosurgery (in case the tumor remnant is small), novel agents could be effective (limited data)

Dispenzieri A & Kyle RA. Best Prac & Res Haematol, 2005; 18: 673-688 Cerase A et al. Ann Hematol, 2008; 50: 665-674 Gozetti A et al. Clin Lymphoma Myeloma, 2007; 7: 376-378 Katodritou E et al. Acta Haematologica, 2007; 117: 20-23



≻Associated with:

- Unfavorable cytogenetics
- Plasmablastic morphology
- High tumor mass
- Extramedullary myeloma
- Circulating plasma cells
- Poor survival (<6-9mo)</p>
- ≻Treatment
- Radiation
- IT MTX, Ara-C

Fassas A, et al. Br J Haematol, 2002: 117: 103-108

Peripheral neuropathy (PN)

Disease related

➤Treatment related

Symptoms of PN

> Sensory

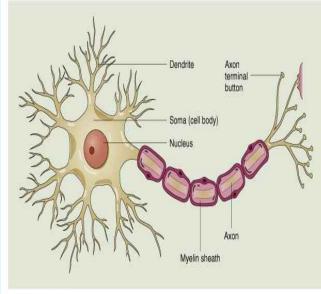
- decreased sensitivity: numbness
- increased sensitivity: paraesthesia, hyperaesthesia
- neuropathic pain
- tremor
- proprioceptive failure

≻ Motor

• weakness

> Autonomic

- hypotension
- constipation, diarrhoea
- bradycardia


Kelly JJ, et al. Rev Neurol Dis 2004;1:133-40

Peripheral neuropathy (PN) at diagnosis

≻Routine clinical diagnosis: 3-13%

- ► Detailed neurological testing (FACT/EPS) :39-83% small fibres
- ➢ Histopathology: ~60%
- ► Axonal (EP), + demyelination (histology)
- Symmetric, distal, sensory or sensorimotor
- Most commonly in IgG myeloma M-component>3g/dL, κ light chain (65%)
- ► Mild in the absence of amyloidosis
- ► Light-chain deposition is often implicated
- >EP does not predict the onset of clinical PN
- ≻Refractory to any treatment

Silberman J & Lonial S. Hematol Oncol, 2008; 26: 55-65 Mileshkin L, et al. J Clin Oncol, 2006; 24: 4507-4514 *Richardson PG, et al. J Clin Oncol, 2006; 24: 3113-3120 Richardson PG, et al. Blood, 2005; 106: abstr: 2548*

© 2000 John Wiley & Sons, Inc

Treatment-related PN in myeloma

Cytostatic drugs¹

- Vincristine
- Cisplatin

≻ Novel agents²⁻¹¹:

incidence according to disease status (newly diagnosed vs relapsed), dose, duration and predisposing factors

 $\checkmark IMiDs^{2-5}$

■ Thalidomide (27-75%^{3,4}, grade $\geq 2 \approx 30\%^2$)

Lenalidomide (grade 3,4 <5%)⁵

✓ *Bortezomib*⁶⁻¹¹ (21-64%^{6,11}, grade ≥3: 3-22%^{11,8})

- 1. Siberman J & Lonial S. Hematol Oncol, 2008; 26: 55-65
- 2. Mileshkin L et al. J Clin Oncol, 2006; 24: 4507-4514
- 3. Richardson PG, et al. May Clin Proc, 2004; 79: 875-882
- 4. Tosi P, et al. Eur J Haematol, 2005; 74: 212-216
- 5. Dimopoulos MA et al. N Eng J Med, 2007; 357: 2123-2132

6. Richardson PG, et al. J Clin Oncol, 2006; 24: 3113-3120 7.
7.Jagannath S, et al. Br J Haematol 2004;127:165-172
8. Badros A et al. Cancer, 2007; 110: 1042-1048
9. Richardson PG et al. N Eng J Med, 2005; 352: 2487-2498
10. San Miguel J, N Eng J Med, 2009; 359: 906-917
11. Richardson PG, et al. J Clin Oncol, 2009; 27: 3518-3525

How important is PN in myeloma?

- One of the most frequent non-hematological side-effects of myeloma treatment
- PN may have a serious impact on the patient's QoL
 - physical: discomfort, pain, decreased functioning
 - social
 - psychological
- "Frustrating" for the treating physician
 - prevention: difficult
 - treatment: disappointing
- Interference with treatment efficacy?
 - because of dose reduction
 - because of treatment interruption

Tariman JD, et al. Clin J Oncol Nursing 2008;12S3:29-36

Pathogenesis of treatment-related PN

- Main neurological targets
 - axon
 - ✓ large fibres: "dying back" axonopathy
 - small fibres (afferent fibres Aβ, Aδ, C, in bortezomib related PN)
 - dorsal root ganglia (occasionally)
 - Schwann cells (predominantly in bortezomib-related PN)

Potential mechanisms of damage

- induction of apoptosis of neural cell bodies
- disruption of axonal transport
- damage to
 - ✓ endoplasmatic reticulum
 - ✓ mitochondria
 - ✓ vasa vasorum

Murillo JR, et al. J of Pharm Pract 2008;21:138-45 Behin A, et al. Curr Opin Neurol 2008;21:534-9

Pathogenesis of thalidomide & bortezomibinduced PN ≻ Thalidomide¹

Down-regulation of TNF-α, NFκB-mediated inhibition of nerve-growth-factor mediated neuron survival

<u>Bortezomib²</u>

Mitochondrial- and ER-mediated dysregulation of Ca⁺⁺ homeostasis^{3,} NFκB-mediated inhibition of nerve-growthfactor mediated neuron survival, auto-immune factors and inflammation, altered peripheral autonomic tone

- **Predisposing factors**⁴⁻⁸
- Advanced age
- Previous exposure to neurotoxic antimyeloma agent
- Pre-existing PN
- Diabetes, alcohol abuse

Cavaletti G, et al. Neurology 2004;62:2291-3
 Argyriou AA, et al. Blood 2008;112:1593-9
 Landowski TH, et al. Cancer Res 2005;65:3828-36

4. Richardson PG, et al. J Clin Oncol, 2006; 24: 3113-3120
5. Richardson PG, et al. Br J Haematol, 2009; 144: 895-903
6 Mateos MV, et al. Blood 2006; 108: 2165-2172
7. El-Cheikh J, et al. Clin Lymphoma Myeloma, 2008; 8: 146-152
8 Badros A, et al. Cancer, 2007; 110: 1042-1048

Clinical presentation of PN

		Thalidomide ^{1,2}	Bortezomib ^{3,4}
Localization	extremities: "glove and stocking"	yes	yes
	symmetrical	yes	yes
Sensory symptom	s paraesthesia	++	++
	numbness	++	+
	hyperaesthesia	+	++
	neuropathic pain	+	++
	proprioceptive failure	+	+
Motor symptoms	decreased muscle strength	+	+
Autonomic symptoms	hypotension, impotence, bradycardia	+	+
	1. Chaudry V, et al. Neurology 2002;59:1872	2 3. Argyriou AA, et	al. Blood 2008;112:1593-

2. Mileshkin L, Prince HM. Leuk Lymphoma 2006;47:2276-9

3. Argyriou AA, et al. Blood 2008;112:1593-9 4. Cata JP, et al. J Pain 2007;8:296-306

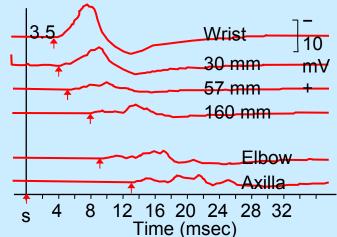
Evolution of PN

	Thalidom	ide	Bortezomib
Dose-dependent?	yes ^{1,2,5} correlation between tota dose and clinical involv (particularly if > 20 g ad	ement	yes CREST trial ³ (8% vs 15%) maximum at 30 mg/m ² APEX trial ⁸ (cumulative dose 26mg/m ²)
Time-dependent?	yes slow onset (median ≅ 4 incidence doubles betw 12 months (40% to 75% Yes 15-25% ^{5,6}	veen 6 and	yes slow or subacute onset maximum around cycle 5 followed by stabilization ⁸ Yes 5-34% ^{4, 8}
discontinuation? Reversible?	minimally		~70% have improvement
2. Chaudhry V, et	t al. Neurology 2004;62:2291-4 al. Neurology 2002;2002:1872 Br J Haematol 2004;127:165-72	5. 6. Hulin C 7. Tosi P	or resolution 2–3 months ^{4,8} chardson PG, et al. JCO 2006;24:3113-20 Mileshkin L, et al. JCO 2006;24:4507-14 , et al. J Clin Oncol, 2009; 27: 3664-3670 et al. Eur J Haematol, 2005; 74: 212-216 et al, Br J Haematol, 2009; 144: 895-903

Risk of peripheral neuropathy with bortezomib increases over time Onset by cycle 5, cumulative bortezomib dose of approximately 26 mg/m² 5 cycles 8 cycles Patients (%) All grades Grade 3 or 4 Cumulative calculated dose (mg/m^2)

Richardson PG et al, Br J Haematol, 2009; 144: 895-903

Diagnosis of treatment-related PN


Clinical: ask the right questions!

- ✓ general: NCI CTC grading system
- ✓ specific: Neurotoxicity FACT/Gynecologic Oncology Group
- ✓ TNS (Total neuropathy score): combines symptoms, signs, abilty aspects and EP measures
- ✓ Clinical neurological examination!

Electrophysiology: nerve conduction studies, electromyography

- ✓ sensory/motor
- ✓ action potentials
- ✓ conduction velocity
- ✓ latency time
- Imaging: little value
- Histology: rarely required

Kelly JJ. Rev Neurol Dis 2004;1:133-40 Windebank AJ, Grishold W. J Peripher Nerv Syst 2008;13:27 Cavaletti G, et al. Neurology, 2003; 61: 1297-1300

Intervention for treatment-related PN

Prevention: dose-modification guidelines (SmPC)

> Pharmacological treatment

- ✓ vitamins: high doses of vitamins C and B6 can be toxic
- \checkmark nutritional supplements: glutamine, L-carnitine, α -lipoic acid
- ✓ medication
 - tricyclic antidepressants: amitriptyline, nortriptyline
 - anticonvulsants: gabapentin, pregabalin
 - opioids: oxycodone, morphine, fentanyl
 - serotonin/norepinephrine-reuptake inhibitors
 - nonsteroidal anti-inflammatory drugs

> Topical treatment

- ✓ lidocaine patch
- ✓ capsaicin cream, cocoa butter
- ✓ 0.5% menthol in calamine cream

> Others

- ✓ high-dose intravenous gammaglobulins
- ✓ physical exercise

Dose modification for PN: guidelines for thalidomide & bortezomib

Neuronathy	Action to be taken	Neuropathy	Action to be taken
Neuropathy Grade 1	Action to be taken continue to monitor the patient with clinical examination (or reduce the dose by 50% if symptoms worsen).However dose reduction is not necessarily followed by improvement of symptoms.	Grade 1 Grade 2, or grade 1 with pain	no action reduce bortezomib to 1.0 mg/m ²
Grade 2	Reduce the dose and continue to monitor the patient - if no improvement or worsening: discontinue treatment	Grade 3, or grade 2 with pain	withhold bortezomib until toxicity resolves then reinitiate at 0.7 mg/m ² and administer once /wk
	- if the neuropathy resolves to grade 1 or better, treatment may be restarted if risk:benefit ratio is favourable		discontinue bortezomib Cilag. Bortezomib SmPC
Grade 3 Grade 4	discontinue treatment permanent discontinuation	Dose modifications do not adversely affect outcome Richardson PG, et al. Br J Haematol, 2009; 144: 895-903	
	Celgene. Thalidomide SmPC		

Br J Haematol, 2009; 144: 895-903

Intervention for treatment-related PN

- Pharmacological treatment¹
 - vitamins: high doses of vitamins C and B6 may be toxic
 - nutritional supplements: glutamine, L-carnitine, α-lipoic acid
 - medication
 - ✓ tricyclic antidepressants: amitriptyline, nortriptyline
 - ✓ anticonvulsants: gabapentin, pregabalin
 - ✓ opioids: oxycodone, morphine, fentanyl
 - ✓ serotonin/norepinephrine-reuptake inhibitors
 - ✓ nonsteroidal anti-inflammatory drugs

Topical treatment

- lidocaine patch
- capsaicin cream, cocoa butter
- 0.5% menthol in calamine cream²

Others

- high-dose IV IG³
- physical exercise

Argyriou AA, et al. Blood, 2008; 112: 1593=1599
 Colvin LA, et al. JCO 2008;18:4519-20
 Teoh G, et al. Blood 2006;108 (abstract 5097)

Conclusions

- Neurlogical complications in MM require clinical awareness
- Radiculopathy, spinal cord compression and base-of-skull plasmacytomas could be treated with: corticosteroids, systemic therapy radiation, surgery
- Treatment- related PN is a clinically frequent and important sideefffect, especially for patients receiving thalidomide and bortezomib
- PN has a serious impact on the QoL of MM patients
- Diagnosis relies predominantly on clinical follow-up
- Dose modification or interruption is more important than pharmacological intervention

Future Prospectives

More effective anti-myeloma agents: disease control

- anemia improvement, decreased incidence of treatment- related anemia (novel agents), minimal need for ESAs or transfusions
- agents targeting on biological pathways involved in the pathogenesis of anemia in MM (hepcidin)

>Novel agents with high efficacy and low neurotoxicity

Acknowledgements

Zervas K.

Brugnara C.

Dimopoulos M.A.

Terpos E.

Christakis J.

Kaloutsi V.

Verrou E.

Ganz T. Westerman M. Hedenus M. Birgergard G. Auerbach M.

Gastari V.

Greek Myeloma Study Group