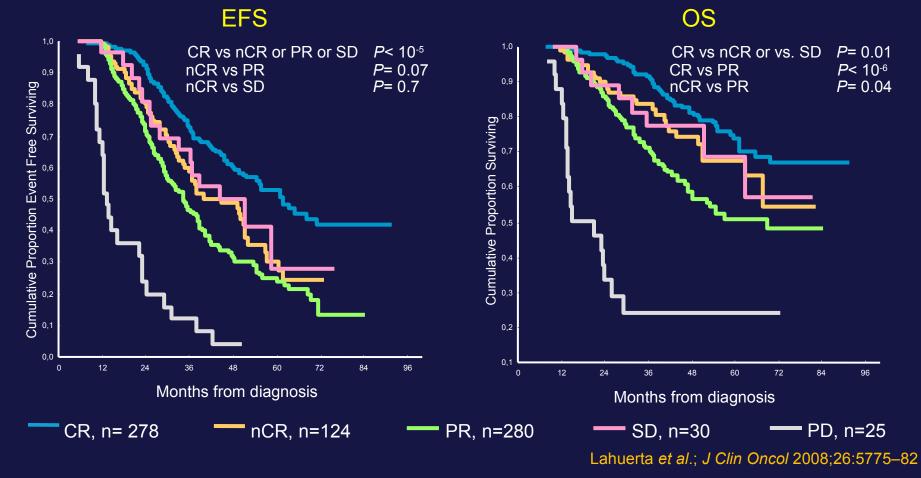
Treatment of newly diagnosed patients with Multiple Myeloma with Bortezomib based regimens


> a focus on European practice Pieter Sonneveld, MD Erasmus MC Department of Hematology Rotterdam The Netherlands

Importance of achieving complete response: A new aim for using *novel* agents

Study details (n=632)

- VBCMP/VBAD induction, HDT + ASCT, maintenance interferon + prednisone

Outcome according to post-transplant response

Part 1 Newly diagnosed MM patients eligible for transplantation

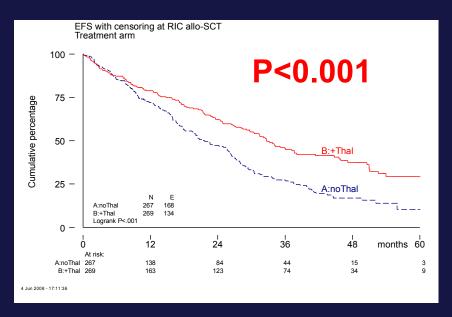
Improving ASCT outcomes in eligible patients

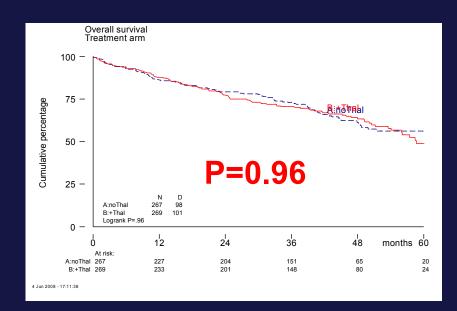
- VAD has been a long-standing standard induction prior to ASCT
 - **but:** CR rate only 5–10%¹
 - Treatment-related mortality (2–5%) in high risk patients:
 30–35% of patients receive no SCT due to progression/infection⁵
- CR + VGPR following ASCT is associated with prolonged EFS and OS²
- Aim: To improve CR rates pre- and post-transplant using novel agents as part of induction regimen^{2,3}
- Improving CR + VGPR rate following induction could result in further improved long-term outcomes^{2,4}

1. Reece. *Hematology* 2005;353–359 2. Harousseau. *Ann Oncol* 2002;13(Suppl. 4):49–54 3. Attal *et al. Hematology* 2007;311–316 4. Jagannath. Ha*ematologica* 2007;92(Suppl. 2) (Abstract S5.3) 5. Moreau et al. Blood 2006

Thalidomide-based induction regimens

	Macro ¹ ThalDex vs VAD (n=100 vs 104)	Morgan ² CTD vs CVAD (n=124 vs 127)	Lokhorst ³ TAD vs VAD (n=201 vs 201)	
# induction Cycles	4	4–6	3	•
Results post-i	induction			_
CR + nCR	-	19% vs 9%*	4% vs 2%*	
≥VGPR	35% vs 13%	39% vs 27%	33% vs 15%	
CR + PR	—	87% vs 75%	77% vs 54%	
Results post-/	ASCT			
CR + nCR	—	51% vs 40%*	30% vs 21%*	
≥VGPR	44% vs 42%	67% vs 53%	65% vs 54%	
CR + PR	-	88% vs 87%	87% vs 79%	


• TAD vs VAD (ASH 2008, IMW 2009)⁴


- Significantly better ORR, EFS and PFS with TAD; but not OS
- EFS: 33 vs 22 months,
 P<0.001
- PFS: 33 vs 25 months,
 P<0.001
- OS: 59 vs 62 months,
 P=0.96

- *CR only
- 1. Macro et al. ASH 2006 (Abstract 57)
- 2. Morgan et al. ASH 2007 (Abstract 3593); IMW 2009 (Abstract 546)
- 3. Lokhorst et al. Haematologica 2008;93:124–127
- 4. Lokhorst et al. ASH 2008 (Abstract 157); IMW 2009 (Abstract 46)

Event Free Survival and Survival in Hovon 50

EFS

OS

Lokhorst et al. ASH 2008 (abstract 157); IMW 2009 (abstract 46

Phase III ECOG trial: RD vs Rd

Primary therapy with RD vs Rd: 4-month landmark analysis

	RD	Rd
Primary therapy: 4 cycles		
No transplantation	n=54	n=39
3-year OS (%)		<60
Transplantation	n=50	n=40
3-year OS (%)		92
Primary therapy: > 4 cycles	n=108	n=140
3-year OS (%)		79

Summary of post-induction results in Phase III bortezomib trials

	IFM 2005/01	GIMEMA	HOVON-GMMG	PETHEMA/GEM
	Harousseau VD vs VAD (n=214 vs 210) (ASH 2008, joint ASH/ASCO symposium)	Cavo VTD vs TD (n=226 vs 234) (IMW 2009; Abstract 451)	Sonneveld PAD vs VAD (n=150 vs 150) (IMW 2009; Abstract 152)	Rosinol VTD vs VBCMP/VBAD+V vs TD (n=61 vs 58 vs 61) (IMW 2009; Abstract 160)
Results pos	t-induction			
CR	6% vs 1%*	21% vs 6%*	n/a	30% vs 20% vs 6%*
CR + nCR	15% vs 7%*	32% vs 12%*	7% vs 2%*	n/a
≥VGPR	39% vs 16%*	62% vs 29%*	45% vs 17%*	n/a
CR + PR	<mark>82%</mark> vs 65%*	<mark>94%</mark> vs 79%*	79% vs n/a%*	77% vs 70% vs 62%

*significantly different

Bortezomib induction regimen results in high CR/nCR rates post-induction

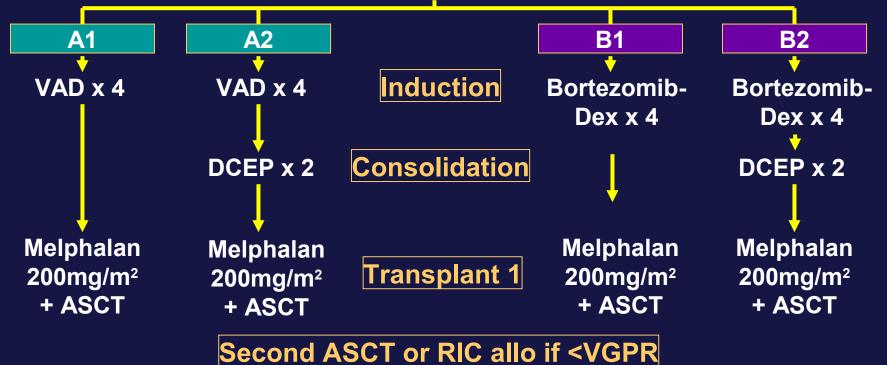
n/a: not available

Summary of post-transplant results in Phase III bortezomib trials

	IFM 2005/01	GIMEMA	HOVON-GMMG	PETHEMA/GEM
	Harousseau VD vs VAD (n=212 vs 213) (ASH 2008, joint ASH/ASCO symposium)	Cavo VTD vs TD (n=226 vs 234) (IMW 2009; Abstract 451)	Sonneveld PAD vs VAD (n=150 vs 150) (IMW 2009; Abstract 152)	Rosinol VTD vs VBCMP/VBAD+V vs TD (n=61 vs 58 vs 61) (IMW 2009; Abstract 160)
Results pos	t-ASCT			
CR	17% vs 9%*	43% vs 23%*	n/a	48% vs 43% vs 23%
CR + nCR	37% vs 19%*	<mark>55%</mark> vs 32%*	26% vs 14%*	n/a
≥VGPR	57% vs 38%*	76% vs 58%*	71% vs 44%*	n/a
CR + PR	<mark>84%</mark> vs 79%	n/a	91% vs 79%*	n/a

*significantly different

Bortezomib induction regimen results in high CR/nCR and VGPR rates post-transplant


n/a: not available

IFM 2005/01 Study: Bortezomib-Dex vs VAD

Primary analysis: post-induction response in VAD vs Bortezomib-Dex Randomization

stratified by β_2 -microglobulin level (>3mg/L vs ≤3mg/L) and presence

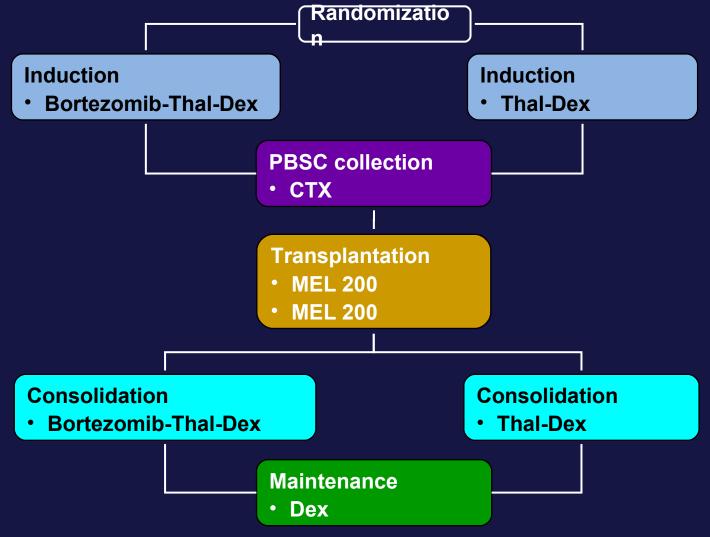
of chromosome 13 abnormalities (by FISH analysis)

Responses (evaluable patients)

	VAD	Bortezomib-dex	Р			
	Response after induction					
	n=210	n=214				
CR + nCR	7%	15%	0.0035			
≥VGPR	16%	39%	<0.0001			
≥PR	65%	82%	<0.0001			
	Response	after first ASCT				
	n=213	n=212				
CR + nCR	19%	37%	0.0001			
≥VGPR	38%	57%	0.0003			
≥PR	79%	84%	ns			

Bortezomib results in significantly higher CR/nCR and VGPR rates than VAD

Response rates are improved post-ASCT


Impact of β2M and del(13) on postinduction responses (≥VGPR)

	Bortezomib-Dex	VAD	Р
Chr 13 (by FISH)			
Deletion	n=101	n=103	
	47%	15%	<0.0001
Normal/NE	n=139	n=139	
	30%	15%	0.003
β2M≤3/Δ13	n=63	n=65	
	43%	15%	0.0006
t(4;14) and/or Δ(17p)			
Deletion	n=40	n=29	
	40%	17%	0.04
Normal/NE	N=200	n-=213	
	37%	15%	<0.0001

Adverse events

	VAD (n=239)	Bortezomib-dex (n=238)
Anemia (grade 3/4)	9%	4%
Neutropenia (grade 3/4)	10%	5%
Thrombocytopenia (grade 3/4)	1%	3%
Infection (grade 3/4)	12%	9%
Herpes zoster (all grades)	2%	9%
Thrombosis (all grades)	12%	5%
Fatigue (all grades)	21%	28%
Rash (all grades)	9%	12%
GI symptoms (all grades)	31%	27%
Peripheral neuropathy		
Grade 2	8%	18%
Grade 3/4	2%	7%

Bortezomib-Thalidomide-Dex (VTD) vs Thalidomide-Dex (TD) (GIMEMA study)

VTD vs TD: Response rates

	VTD (%)	TD (%)	Р
	n=226	n=234	
Response after induc	tion		
CR	21	6	<0.001
CR/nCR	32	12	< 0.001
≥ VGPR	62	29	< 0.001
≥ PR	94	79	<0.001
Progression	0	4.7	0.001
Responses after ASC	т		
CR	43	23	<0.001
CR/nCR	55	32	< 0.001
≥ VGPR	76	58	< 0.001

Superiority of VTD over TD maintained across all sub-group analyses according to standard prognostic factors, including β2-m, albumin, stage (ISS), Hb, PLTs, bone marrow PC, M protein isotype, LDH, CRP Cavo *et al.* Blood 2008; 112: Abstract 158

Response in patients with cytogenetic abnormalities

CR+nCRs by treatment arms in relationship to cytogenetics (FISH data available in 93% to 99% of all pts)

	VTD (%)	TD (%)	Р
del(13)	39%	12%	<0.001
t(4;14)	40%	8.5%	<0.001
del(17p)	27%	0	0.03

Superiority of VTD over TD observed in low-risk and high-risk sub-groups, including patients with del(13), t(4,14) and del(17p)

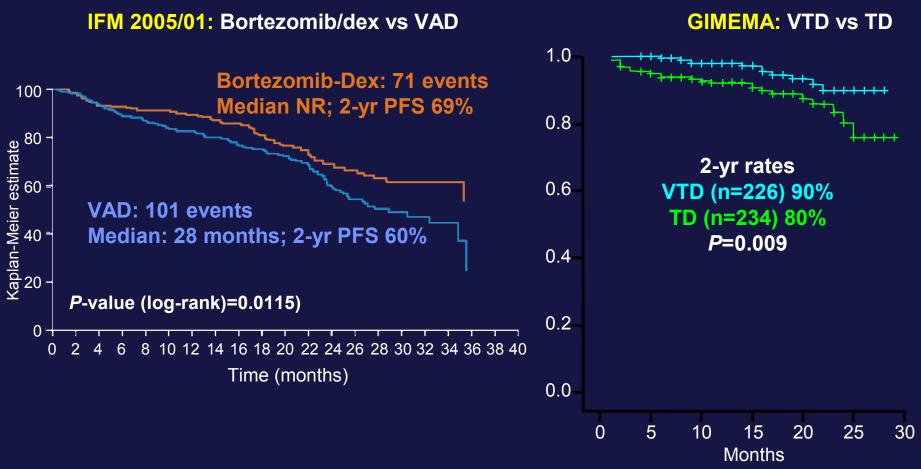
Grade 3-4 non-hematologic adverse events (induction therapy)

Adverse Event	VTD (n=226)	TD (n=234)	Р
SAEs	15%	12%	NS
PN	9.1%	2.1%	<0.001
Skin Rash	7.9%	1.2%	<0.001
DVT	3.9%	5.5%	NS
Infections (exclud. Herpes zoster)	2.6%	4.2%	NS
Constipation	2.6%	2.5%	NS
Liver Toxicity	1.7%	2.5%	NS
Herpes Zoster Infection	1%	0	NS

NS: Not significant

Cavo et al. Blood 2008; 112: Abstract 158

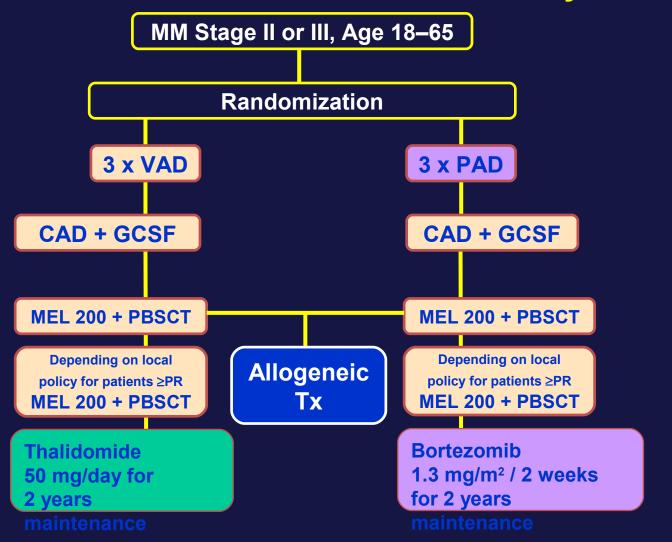
Discontinuation of induction therapy


	VTD (n=226)	TD (n=234)
Discontinuation	4.4%*	10.2%*
Toxicity	3.1%	2.1%
Progression	0	4.7%
Other	1.3%	3.4%
Early Deaths	0.4%	0.9%

* P=0.01

Cavo et al. Blood 2008; 112: Abstract 158

Progression-free survival advantage with bortezomib induction regimens


PFS data in Phase III trials

Harousseau et al. ASH 2008 (joint ASH/ASCO symposium)

Cavo et al. ASH 2008 (Abstract 158); IMW 2009 (Abstract 451)

Phase III: PAD vs VAD as induction treatment HOVON 65 MM / GMMG-HD4 study

Response rates

Interim analysis: n=300 with complete data set; analysis as of 26 February 2009

	VAD (n=150)	PAD (n=150)	Р
Response afte		· · ·	
CR/nCR	2%	7%	*
≥VGPR	17%	45%	*
≥PR	na	79%	*
Responses af	ter first ASC I		
CR/nCR	14%	26%	*
≥VGPR	44%	71%	*
≥PR	79%	91%	*

* Significant difference between arms

PAD significantly increased the rate of CR+nCR and ≥VGPR pre- and posttransplant compared with VAD

Sonneveld et al. EHA 2009 Abstract 473

Response data

Improvement in CR rate over course of treatment

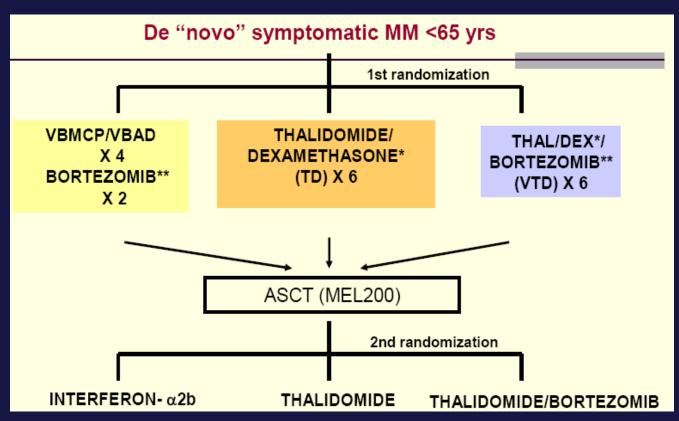
		Induction	HDM	Maintenance (6 months)
CR/nCR	VAD	2%	14%	27%
	PAD	7%	26%	43%

Impact of del(13) and t(4;14) on response

		VAD ≥VGPR	PAD ≥VGPR
del(13) n=146	yes / no	66% / 56% (ns)	81% / 66% (ns)
t(4;14) n=132	yes / no	93% / 57% *	85% / 73% (ns)

ns = not significantly different
* significantly different

Sonneveld et al. EHA 2009 Abstract 473

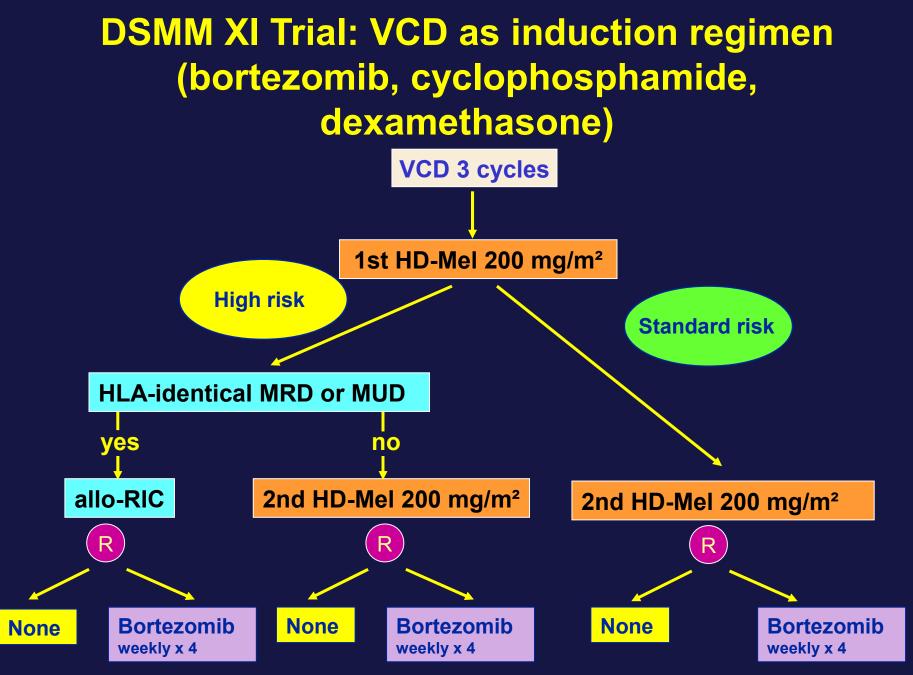

Adverse events

Adverse events (AEs)	VAD	PAD
	(n=150)	(n=150)
Any AEs	82%	87%
AEs grade 3/4	53%	59%
AEs leading to discontinuation	3%	6%
Infections grade 2-4	42%	54%
Herpes zoster	2%	15% (without prophylaxis) 9% (with prophylaxis)
Fatigue	26%	29%
Rash	11%	13%
PN grade 3/4	6%	16%

Phase III: VTD vs VBMCP/VBAD + V vs TD as induction

Spanish Myeloma Group (PETHEMA/GEM) study

Study design


Rosinol et al. ASH 2008 (abstract 654); IMW 2009 (abstract 160)

Results

	VTD	VBCMP/VBAD + V	TD	Р
	(n=61)	(n=58)	(n=61)	
Response after inc	luction			
CR	30%	20%	6%	<0.01
≥ PR	77%	70%	62%	NS
Responses after A	SCT			
CR	48%	43%	23%	NS
	VTD	VBCMP/VBAD + V		TD
Grade 3/4 AEs	54%	50%	38%	
Specific events ≥ grade 3	16% PN		13% thrombotic events	

- VTD and VBCMP/VBAD + V result in higher CR rates than TD pre- and post-ASCT
- Toxicity in the three arms is not significantly different

Rosinol et al. ASH 2008 (abstract 654); IMW 2009 (abstract 160)

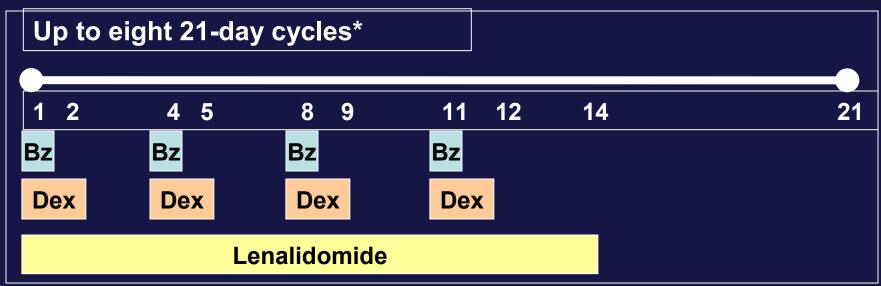
Knop et al. ASCO 2009: Abstract 8516

Response data

Interim Analysis:

Response data on study day 63

Interim analysis; investigator-based assessment (n = 200)


	n (%)
ORR	168 (84.0)
CR	25 (12.5)
PR	143 (71.5)
MR	11 (5.5)
SD	17 (8.5)
PD	4 (2.0)

Response according to cytogenetic subgroup

Responses (CR + PR) on study day 63 (investigator assessment)

Molecular cytogenetics / FISH	CR + PR (%)	< PR (%)
Normal, n=51	86.3	13.7
Abnormalities,n=91	82.4	17.6
13q-, n=55	81.8	18.2
t(4;14), n=16	93.8	6.3
17p-, n=20	70	30
Other, n=48	87.5	12.5
Overall, n=200	84	16

RVD Phase I/II in Newly Diagnosed MM: Study design

*Dex, 40 mg/day Days 1, 2, 4, 5, 8, 9, 11 and 12; 20 mg, cycles 5–8; Amended to 20 mg/10 mg cycles 1–4/5–8 based on safety data

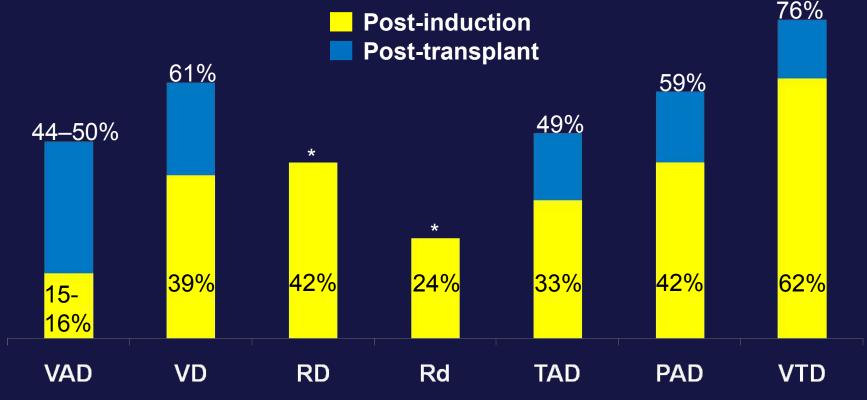
- Pts ≥PR may proceed to ASCT after ≥4 cycles
- Maintenance therapy permitted in pts ≥SD using weekly (days 1 and 8) schedule of Bz, and Dex on days 1, 2, 8, and 9
- Antithrombotic therapy with daily aspirin (81 or 325 mg)

Bortezomib consolidation

N=40 ≥VGPR after ASCT

6 cycles with VTD, started within 6 months

6 patients converted to molecular remission


No clinical relapse at median followup of 26 months 34 patients not achieving MR

8 relapses at median 12 months

Ladetto et al. ASH 2008 (abstract 3683)

Summary of novel agent induction trials

≥VGPR rates post-induction and post-transplant

*Post-transplant data not available

Harousseau *et al.* ASH/ASCO symposium during ASH 2008 Rajkumar *et al.* ASCO 2008 (Abstract 8504); ASH 2008 (joint ASH/ASCO symposium) Lokhorst *et al. Haematologica* 2008;93:124–127 Sonneveld *et al.* ASH 2008 (Abstract 653); IMW (Abstract 152) Cavo *et al.* ASH 2008 (Abstract 158); IMW 2009 (Abstract 451)

Effect of Bortezomib on stem cell collection

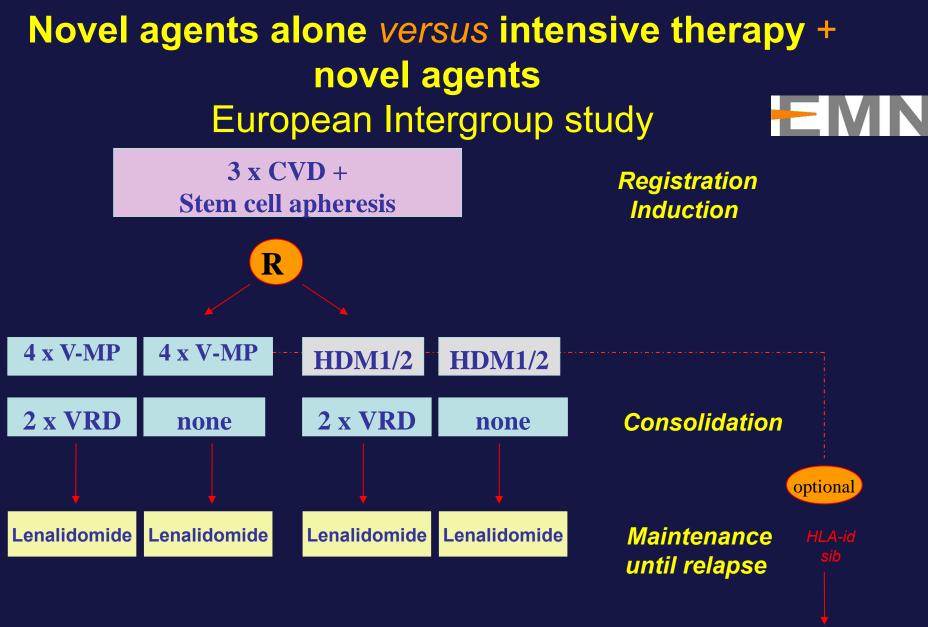
Novel agents and stem cell collection

Thalidomide

Adequate collection of stem cells¹

Lenalidomide

- Cytotoxic effect on bone marrow²
- Evidence of decreased stem cell yield after lenalidomide exposure
- Recommendation: collection of PBSC within 6 months of initiation of lenalidomide^{2,3}
- Mobilization with G-CSF + cyclophosphamide can overcome suppressive effect of lenalidomide treatment^{4,5}


Bortezomib

- Not cytotoxic to bone marrow⁶
- Successful mobilization and adequate collection of PBSC with variety of induction regimens⁷⁻¹⁰

PBSC, peripheral blood stem cells

- 1. Breitkreutz et al. Leukemia 2007;21:1294–1299
- 2. Kumar et al. Leukemia 2007;21:2035-2042
- 3. Mazumder et al. Blood 2007;110:(Abstract 3612)
- 4. Mark et al. Biol Blood Marrow Transplant 2008;14:795-798
- 5. Palumbo et al. EHA 2009 (Abstract 707)

6. San Miguel *et al. The Oncologist* 2006;11:51–61
 7. Oakervee *et al. Br J Haematol* 2005;129:755–762
 8. Harousseau *et al.* ASH 2008 (joint ASH/ASCO symposium)
 9. Cavo *et al.* ASH 2008 (Abstract 158)
 10. Goldschmidt *et al.* ASH 2008 (Abstract 3470)

Stem cell mobilisation after CVD in all patients

Part 1: Conclusions

- Including bortezomib in induction regimens improves overall and complete response rates pre- and post-transplant
 - Stem cell collection feasible
- Impact on overall survival with the novel induction regimens remains to be determined
 - To define optimal induction regimen: 2-drug vs
 3 or 4-drug regimens

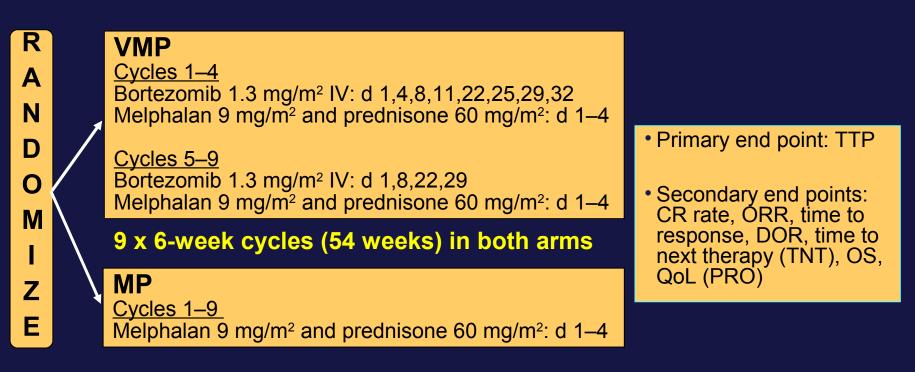
Part 2 Newly diagnosed MM patients not eligible for transplantation:

Treatment of patients in the non-transplant setting

- Melphalan + prednisone (MP) has been considered standard treatment for patients not eligible for transplantation
 - Results are generally disappointing
- Novel agents are being incorporated into traditional regimens
 Improvements in outcome seen (mainly in younger patients)
- Need to balance efficacy and toxicity to offer individualized treatment approach and improve survival
 - Consider age, physical condition, comorbidities

Summary of five MPT Phase III trials conducted in the upfront setting

Regimen	n	CR+PR (%)	CR (%)	PFS/EFS/TTP	OS	Reference
Thal/MP vs MP	129 126	76 48	16 4	21.8 m 14.5 m	45 m 47.6 m	Palumbo <i>et al.</i> <i>Blood</i> 2008; 112:3107–3114
Thal/MP vs MP	191 124	76 35	13 2	27.5 m 17.8 m	51.6 m* 33.2 m	Facon, et al. <i>Lancet</i> 2007; 370:1209–1218
Thal/MP vs MP (>75 y)	113 116	62 31	7 1	24.1 m 18.5 m	44 m* 29.1 m	Hulin, e <i>t al. JCO</i> 2009 [Epub]
Thal/MP* vs MP	363	42 28	6† 3†	20 m 18 m	29 m 33 m	Gulbrandsen et al. EHA 2008 (Abstract 209)
Thal/MP vs MP	152 149	66 47	2 2	EFS 13 m vs 9 m PFS 14 m vs 10 m	40 m* 30 m	Wijermans <i>et al</i> . IMW 2009 (Abstract 116)


*Thal doses: 200-400 mg

[†]CR + nCR

In 5/5 studies, MPT was superior to MP in terms of PFS and/or TTP. *In 3/5 studies, MPT was superior to MP in terms of OS.

VISTA: VELCADE as Initial Standard Therapy in multiple myeloma: Assessment with melphalan and prednisone

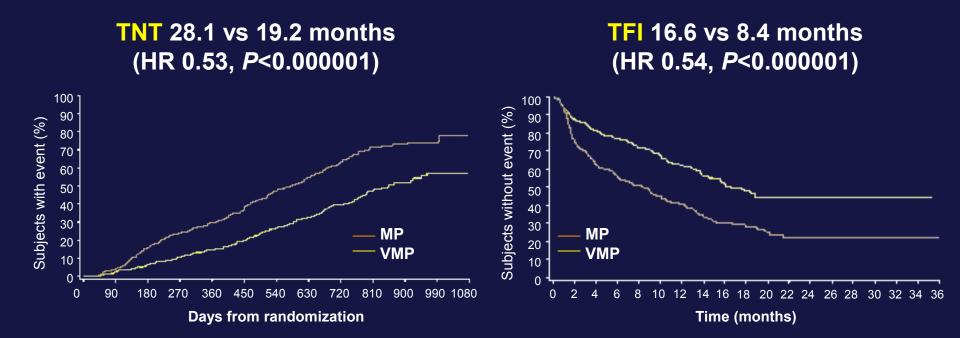
- Randomized, international, phase III trial of VMP vs MP in previously untreated patients with symptomatic MM who were not candidates for HDT-ASCT due to age (≥65 yrs) or co-morbid conditions
- Stratification: β_2 -microglobulin, albumin, region

VISTA: Response data

Responses according to EBMT criteria¹

-				_				
	VMP	MP	p-value					
	n=337	n=331						
ORR (≥PR)	71%	35%	<10 ⁻⁶					
CR	30%	4%	<10 -6					
PR	40%	31%						
MR	9%	22%						
SD	18%	40%				_	_	
			Time to i	<u>espon</u>	<u>se and durat</u>			
					VM	Ρ	MP	p-value
		Median ti	ime to respo	onse, m	onths			
		Time to	o fi <mark>rst respo</mark>	nse*	1.4	4	4.2	< 10 ⁻¹⁰
		Time to	o CR*		4.2	2	5.3	<10 ⁻¹⁰
		Median E	OOR, months	\$				
			oonders		19.		13.1	
					nts; p-values based			
1. Bladé et al. Br J	J Haematol 1998	3;1 <mark>)2:1115-23.</mark>	s achieving	CR	24. San Miguel e <i>t al</i> .	N Engl	J Med 20	08;359:906–1

Phase III VISTA: VMP vs MP Efficacy



43% of MP patients received bortezomib upon progression

- Analysis bortezomib >4 cycles: OS at 1 and 2 years: 98.5% and 89%
- Treatment-related death: 2% in both arms

VISTA: time to next therapy (TNT) and treatmentfree interval (TFI)

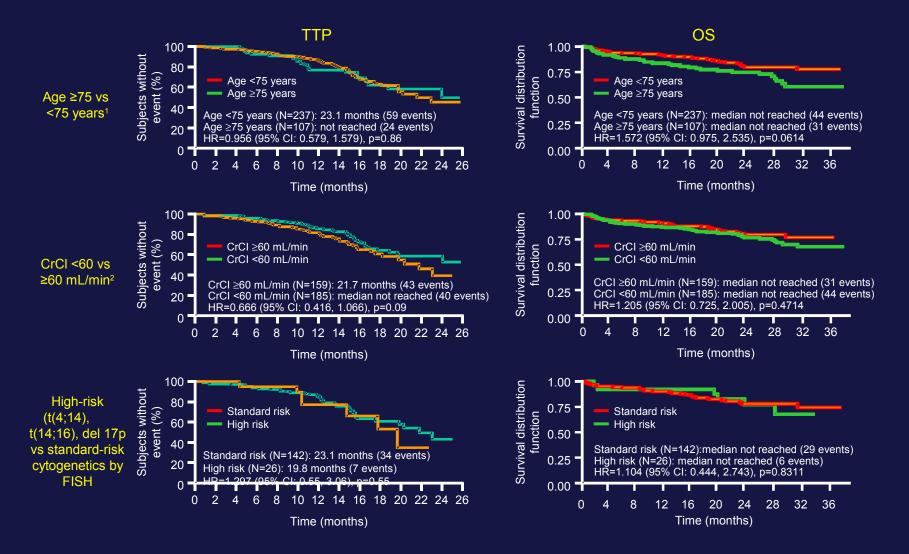
Median TNT and TFI significantly longer for VMP versus MP:

Fewer patients in VMP versus MP arm required subsequent therapy (38% vs 57%)

San Miguel et al. ASH 2008 (abstract 650)

VISTA: adverse events

	VMF	VMP (n=340)		=337)
AE, %	Grade 3	Grade 4	Grade 3	Grade 4
Neutropenia	29	11	23	15
Thrombocytopenia	20	18	16	15
Anemia	16	3	20	8
GI	19	1	5	0
Peripheral sensory neuropathy	13	<1	0	0
Fatigue	7	1	2	0
Asthenia	6	<1	3	0
Pneumonia	5	2	4	1
Herpes zoster	4	0	2	0


Herpes zoster more frequent with VMP (14% vs 4%)

- Rate with VMP only 3% among patients receiving antiviral prophylaxis
- Peripheral neuropathy was manageable and reversible
 - 79% of PN events improved (≥1 grade), median of 1.9 months
 - 60% of PN events completely resolved, median of 5.7 months

Subgroup analysis

- Treatment effect of VMP over MP consistently maintained across all tested subgroups for TTP, OS and response:
 - Age (<75, ≥75)</p>
 - ISS Stage (I,II,III)
 - Cytogenetics (Standard Risk, High Risk)
 - Renal Function (CrCl<60ml/min, CrCl≥60ml/min)</p>

VMP: subgroup analysis in patients with poor prognostic characteristics

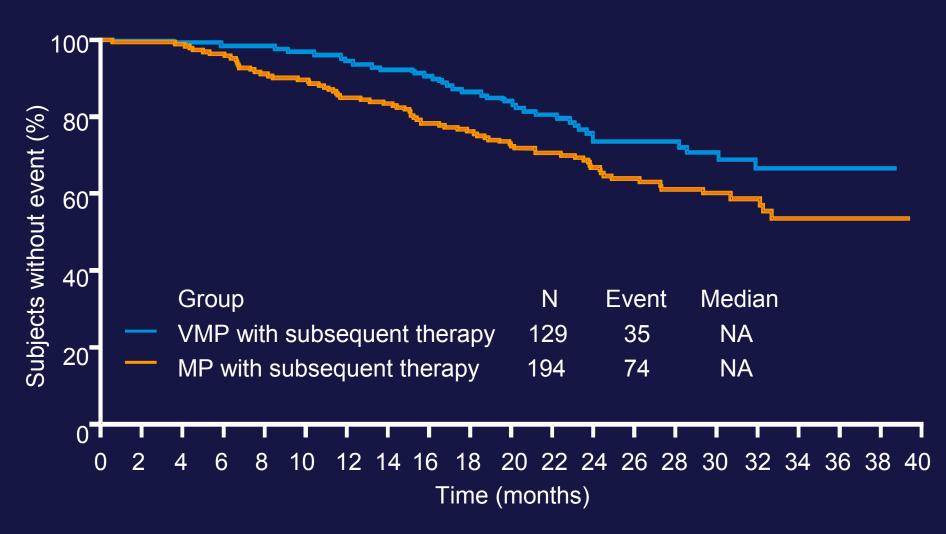
San Miguel et al. Blood 2008; 112: Abstract 650

VISTA subgroup analysis: efficacy in patients ≥75 vs <75 years

	Aç	ge ≥ 75 yeai	rs	Ages < 75 years			
	VMP	MP	Р	VMP	MP	Р	
CR + PR	60%	40%	0.0047	75%	32%	<0.00001	
CR	26%	3%	<0.0001	32%	4%	<0.00001	
TTP	Median not reached	16.4 months	0.018	23.1 months	17.4 months	0.00001	
2-year OS	74%	58%	0.19	79%	73%	0.014	
3-year OS	60%	44%	0.19	77%	65%	0.014	
Rates of se	Rates of serious AEs were higher in patients ≥ 75 years in both the VMP and MP						

arms, indicating an effect independent of the addition of bortezomib

Kropff et al. IMW 2009 (abstract 84)


Subsequent therapy

 Fewer patients in the VMP versus MP arm (38% vs 57%, respectively) had required subsequent therapy by the time of data cut-off

	VMP (n=129)	MP (n=194)
Bortezomib	21 (18%)	84 (43%)
Thalidomide	63 (49%)	86 (44%)
Lenalidomide	25 (19%)	12 (6%)
Others	20 (16%)	12 (6%)

* Other agents were used as subsequent therapy, including dexamethasone; patients could receive multiple-agent regimens.

VMP plus subsequent therapy vs. MP patients plus subsequent therapy, ITT Landmark analysis

San Miguel et al. Blood 2008; 112: Abstract 650

VISTA subgroup analysis: influence of renal impairment

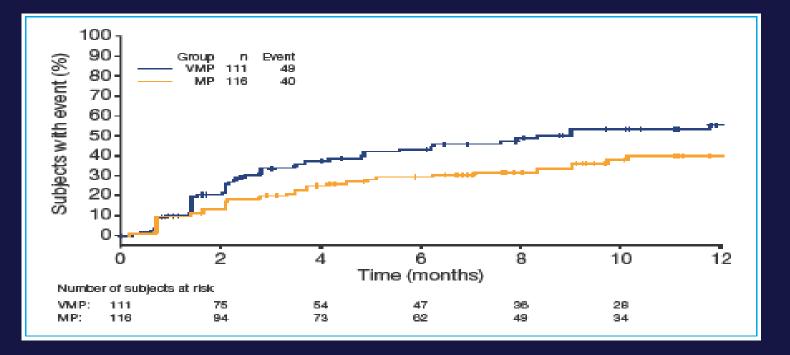
• VMP more effective than MP in patients with renal impairment

	VMP	MP
ORR	70%	43%
CR	28%	4%
Time to first response (median)	1.4 months	3.5 months
Duration of response (median)	19.9 months	13.1 months
TTP Any renal impairment Severe renal impairment (CrCl ≤ 30 mL/min)	median not reached 19.8 months	16.1 months 14.5 months
Reversal or renal impairment (improvement in CrCl from <50 mL/min at baseline to >60 mL/min on treatment)	44%	34%

- Median time to reversal significantly shorter with VMP vs MP (*P*=0.03)
- Safety profiles comparable among patients with CrCl 31–60 and >60 mL/min for VMP and MP

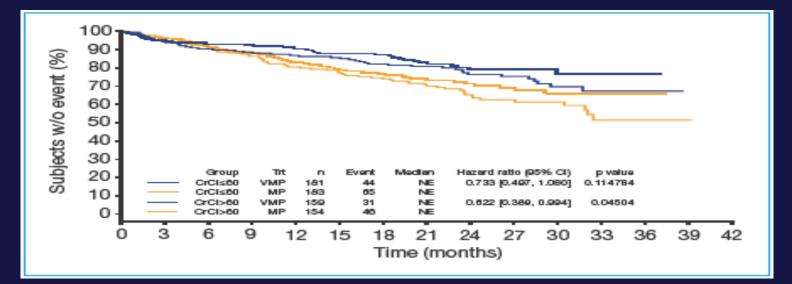
Dimopoulos et al. ASH 2008 (abstract 1727)

Reversal of Renal Impairment

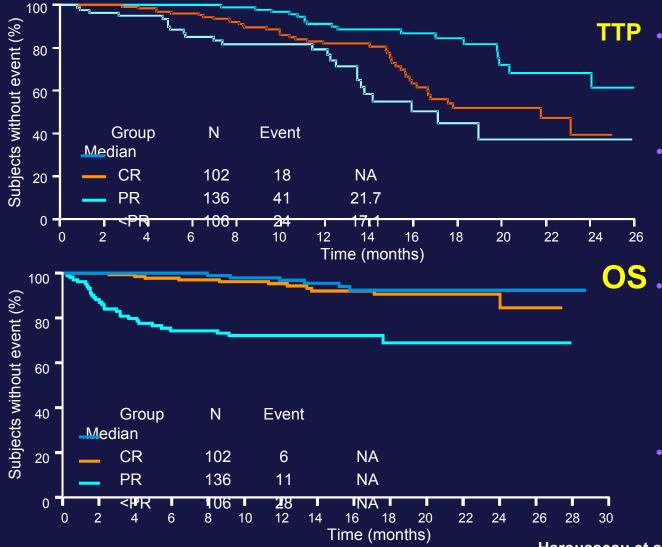

- The rate of renal impairment reversal was more pronounced with VMP
- The rate of CR^{renal} was higher with VMP vs.MP

	VMP	MP
Rate of reversal of renal failure (Baseline CrCl <50 improving to ≥ 60mL/min on treatment)		
All Patients CrCl <50mL/min	44%	34%
CrCl 30 - <50mL/min	46%	39%
CrCL <30mL/min	37%	7%
CrCl increases ≥20mL/min	86%	63%
Renal Responses		
CR ^{renal}	44%	34%
PR ^{renal}	-	50%
MR ^{renal}	42%	67%

Time to Reversal of Renal Impairment


Median time to renal impairment reversal in all patients with baseline CrCl <50 mL/min significantly shorter with VMP vs MP</p>

 9.0 months (VMP) vs 13.6 months (MP) for all patients with baseline CrCl <50 mL/min



Overall survival

- OS consistently longer with VMP vs.MP in patients with:
 - Any renal impairment (3-year OS: 67.4% vs 51.5%, P=0.1148)
 - Normal renal function (3-year OS: 76.8% vs 66.2%, *P*=0.045)
- OS also longer with VMP versus MP in small cohort of patients with severe renal impairment (CrCl ≤30 mL/min):
 - Median OS 28.7 vs 24.7 months, *P*=0.4687
- OS appeared similar between patients with renal impairment and those with normal renal function with both VMP and MP

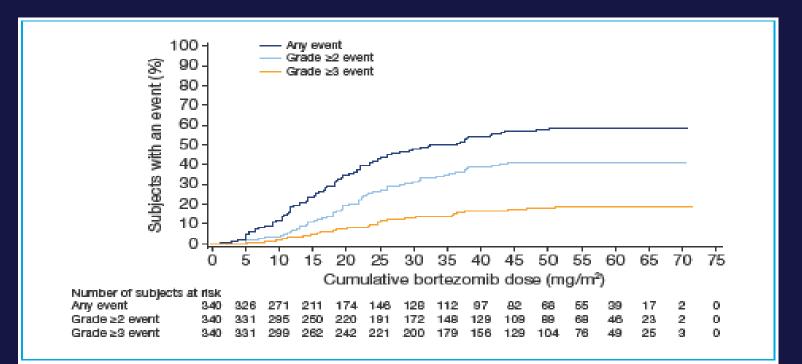
VISTA: TTP and OS in patients achieving CR vs PR vs <PR with VMP

- CR associated with significantly longer TTP vs. PR (HR 0.45, p=0.004)
 - Significant benefit also seen for CR+PR vs .<PR
 - No significant difference in OS with CR vs. PR, likely due to the small number of deaths (HR 0.59, p=0.26)
 - Significant benefit seen for CR+PR vs. <PR

Treatment Emergent PN

	All	Grade ≥3	Discontinued VMP	Selectively Discontinued bortezomib*	Dose Reduced
PN NEC**	47%	13%	3%	11%	22%
Neuropathy Peripheral	3%	0	0	<1%	1%
Motor PN	6%	2%	0	1%	2%
Sensory PN	44%	13%	3%	11%	21%

* Continued to receive melphalan plus prednisone but discontinued bortezomib;


** PN NEC – MedDRA higher level term, including the three preferred terms shown; some patients reported events in more than one of the preferred terms

NEC – Not elsewhere classified

- Median time to onset of PN 3.3 months (range 0.6–12.4)
- History of neuropathy appeared the only consistent strong risk factor for any PN (P=0.0065), and for grade ≥2 (P=0.0032) and grade ≥3 PN (P=0.023).

Cumulative Dose to First Onset of PN

- The median cumulative bortezomib dose to the first onset of any grade of PN event was 32.6 mg/m²
 - PN rate reached a plateau at a cumulative bortezomib dose of approximately 45 mg/m²

PN Reversibility

- 79% of PN events had improved by at least one NCI CTCAE grade in a median of 1.9 months
- 60% of events had completely resolved in a median of 5.7 months
- With longer follow-up, more patients achieved complete resolution of their PN symptoms

Conclusions

- VMP-associated PN resolved in the majority of cases
- Pre-existing neuropathy appeared to be the only consistent baseline risk factor
- Most patients who developed PN benefited from therapy

Phase II study: PAD induction + reduced-intensity ASCT + lenalidomide consolidation/maintenance in elderly patients with newly diagnosed MM

- Patients (n=102)
 - aged 65–75 years
- Treatment

Induction (four 21-day PAD cycles) Bortezomib 1.3 mg/m² days 1, 4, 8, 11 Pegylated-lyposomal-doxorubicin 30 mg/m² day 4 Dex 40 mg days 1-4, 8-11, 15-18

Intensification

Tandem Melphalan 100 mg/m² (MEL100) + ASCT

Consolidation (four 28-day LP cycles) Lenalidomide 25 mg days 1-21 + Prednisone 50 mg every other day

Maintenance

Lenalidomide 10 mg days 1-21 every 28 days until relapse

Results

Most frequent grade 3/4 adverse events

During PAD:

- thrombocytopenia (17%)
- neutropenia (10%)
- peripheral neuropathy (16%)
- Pneumonia (10%)

During LP consolidation and L maintenance:

- neutropenia (17%)
- thrombocytopenia (6%)
- Cutaneous rash (4%)

Conclusion

•Bortezomib as induction before transplantation, followed by lenalidomide as consolidation-maintenance induced a very high response rate and prolonged 3-year PFS

Results

	After PAD	After tandem MEL100 + ASCT	After LP Consolidation and L maintenance
CR	13%	39%	66%
≥ VGPR	59%	82%	86%

- Median follow-up: 20.3 months
 - 3-year PFS 68.8%
 - 3-year TTP 74.7%
 - 3-year OS 86.3%
- Similar TTP in patients with high risk cytogenetic profile, including del17 or t(4;14) or t(14;16), and those with standard cytogenetic profile

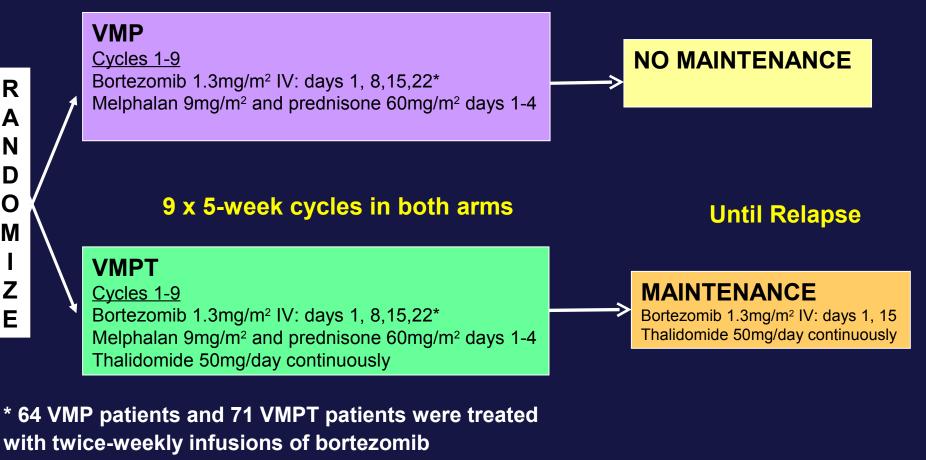
GIMEMA Study Design

- **511** Patients (≥ 65 years) randomized from 58 Italian Centres •
- Protocol amended to change bortezomib from biweekly to ulletweekly infusions

R

Α

Ν


D

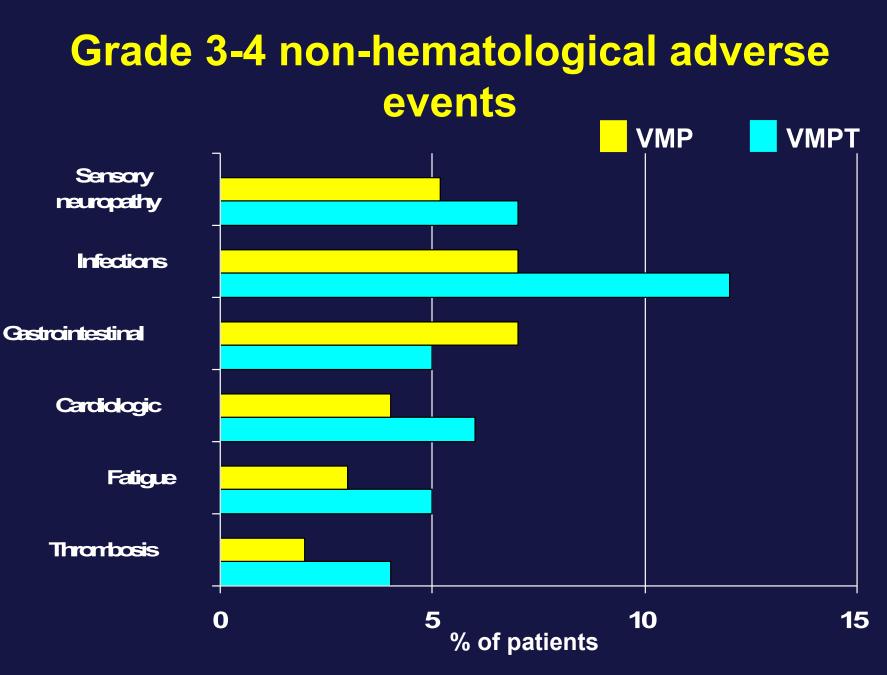
0

Μ

Ζ

Ε

Best Response


• Median number of cycles in each treatment arm: 5

	VMPT group (n=221)	VMP group (n=229)	Р
ORR	84%	78%	-
CR	35%	21%	< 0.0001
VGPR	16%	21%	-
≥ VGPR	51%	42%	0.06
PR	33%	36%	-
SD	9%	18%	-
PD	1%	1%	-

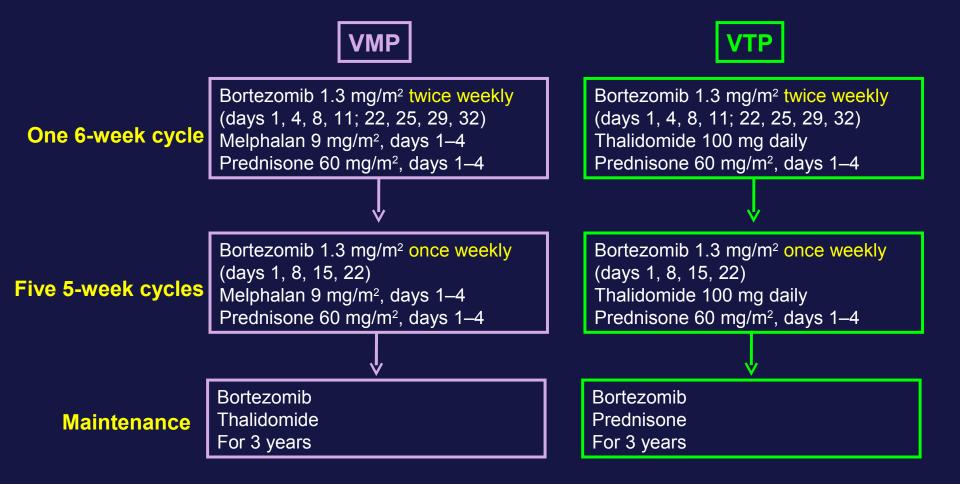
Time to response

Palumbo et al. EHA 2009: Abstract 472

Palumbo et al. EHA 2009: Abstract 472

Efficacy and toxicity

Bortezomib twice-weekly versus bortezomib onceweekly infusion


		<u>/</u>			
	VMP	т	VMP		
	twice weekly (n=71)	weekly (n=150)	twice weekly (n=64)	weekly (n=165)	
CR	38%	32%	27%	20%	
Grade 3-4 Peripheral neuropathy	18%	2%	14%	2%	
Dose reduction*	42%	11%	35%	13%	
Discontinuation*	10%	3%	15%	4%	

*Due to peripheral neuropathy

25 VMPT and 19 VMP patients received both twice- and once-weekly bortezomib

PETHEMA: Study Design

- Patients: n=260, >65 years old
- Treatment : maximum of 6 cycles (31 weeks)

Treatment of very elderly / frail patients

Treatment of very elderly/frail patients no trial data

- 30% of patients in VISTA were ≥75 years old
 - VMP highly effective in this population
 - Safety profile generally comparable, except for a bortezomibindependent higher rate of serious AEs in elderly patients
- Italian and Spanish studies with reduced frequency of administration of bortezomib
 - Significant efficacy is maintained plus reduction in toxicity, in particular significant reduction in PN
- Challenge: balancing efficacy and toxicity
 - Dose modifications to optimize duration of treatment

Recommended adjusted therapy

Autologous transplantation	Full dose chemotherapy	Reduced dose chemotherapy
<65 years	65-75 years	>75 years
In good clinical condition normal: •Cardiac •Pulmonary •Liver •Renal function	In good clinical condition normal: •Cardiac •Pulmonary •Liver •Renal function <65 years	In good clinical condition normal: •Cardiac •Pulmonary •Liver •Renal function 65-75 years
	With abnormal: •Cardiac •Pulmonary •Liver •Renal function	With abnormal: •Cardiac •Pulmonary •Liver •Renal function

Bortezomib dose adjustments

• Depending on age and comorbidities (heart, lung, kidney, liver)

	<65 years	65–75 years	>75 years
Bortezomib		1.3 mg/m² One cycle: twice weekly Then: once weekly	1.3 mg/m² Once weekly

 Once weekly administration enables patients to receive the same overall dose as with the VISTA schedule by increasing the number of treatment cycles

If a grade 3/4 AE occurs:

- **1. Discontinue therapy**
- 2. Wait for toxicity to resolve to grade 1
- 3. Restart at a lower dose

Part 2: Conclusions

- MP + novel agent superior over MP alone
 - MPT: 2/5 studies have demonstrated superior survival over MP
 - VMP: significantly superior survival compared with MP
- VMP allows for treatment-free intervals which may be associated with patient benefits
- Other combinations (VMPT) are feasible and effective
- Dose adjustments should be considered based on age and comorbidities
 - Once-weekly bortezomib schedules result in significant activity with improved tolerability

The disease has many varieties and there are many treatments : always look at your patient and do what suits him best

