Guidelines for Standard Investigative Workup

Meletios A. Dimopoulos. Robert A. Kyle Sundar Jagannath on behalf of the International Workshop Panel 3

Minimal Diagnostic and Prognostic Evaluation for Multiple Myeloma

- History and physical examination
- Complete blood count and differential; peripheral blood smear
- Chemistry screen including calcium and creatinine
- Serum protein electrophoresis, immunofixation
- Nephelometric quantification of serum immunoglobulins
- Routine urinalysis, 24 hour urine collection for electrophoresis and immunofixation
- Bone marrow aspirate and/or biopsy
- Cytogenetics (metaphase karyotype and FISH)
- Radiological skeletal bone survey including spine, pelvis, skull, humeri and femurs. Magnetic Resonance Imaging in certain circumstances
- Serum B2 microglobulin and lactate dehydrogenase
- Measurement of serum free light chains

History And Physical Examination

Past medical history

 CAD, CHF, DVT, hypertension, renal disorders, liver disorders, lung disease etc

Family history

 focus on first degree relatives with the diagnosis of hematologic malignancies especially lymphoma, CLL, and plasma cell dyscrasias

Look for AL-amyloidosis

 Peripheral neuropathy, carpal tunnel syndrome, organomegaly and signs of nephrotic syndrome

Minimal Laboratory Evaluations

Complete blood count with differential

- Peripheral smear for rouleaux formation, plasma cells

Complete biochemistry

- LFTS, urea, creatinine, electrolytes, calcium, albumin

• Albumin

- Nephelometry: most accurate but not widely used
- Densitometry from SPEP: high concentrations of m-protein may overestimate serum albumin
- Biochemistry (Bromcresol): good correlation with nephelometric quantitation
- All albumin methods perform similarly in predicting survival and may be used for ISS
- Urinalysis

Evaluations Of Serum Monoclonal Protein

Serum Electrophoresis

- Agarose gel electrophoresis or
- Capillary zone electrophoresis of serum
- Quantitation of serum immunoglobulins by nephelometry
- Measurement of monoclonal protein both by densitometer tracing and by nephelometric quantitation

Evaluations Of Serum Monoclonal Protein

Nephelometric quantitation

- may overestimate the m-protein when its value is high
- useful for low levels of monoclonal IgA, IgM, IgD (not IgG)
- useful to measure levels of uninvolved immunoglobulins

Serum Immunofixation Electrophoresis (IFE)

- Gold standard to confirm monoclonal protein and to identify heavy and light chain (routine: IgG, IgA, IgM, κ , λ)
- should be performed when there is hypogammaglobulinemia
- should be performed when electrophoretic pattern appears normal but clinical suspicion of PCD
- If serum IFE +ve for free light chain only do IFE for IgD and IgE

Evaluation Of Urine Monoclonal Protein

 For suspected or established myeloma collect 24 hour urine

- calculate amount of proteinuria
- calculate creatinine clearance
- Aliquot from concentrated 24 hour specimen → electrophoresis and immunofixation
- Morning urine sample cannot replace 24 hour urine collection

Serum Free Light Chains

- Recommended in all newly diagnosed patients with PCD
- Very useful in non-secretory, oligosecretory and light chain only myeloma
- SBP, MGUS, SMM \rightarrow abnormal FLC ratio is associated with higher risk of progression to symptomatic MM
- FLC does not obviate need for 24 hour urine collection
- Urine free light chain assay is not recommended

Bone Marrow Studies

- BM aspirate and/or biopsy are mandatory
- Diagnosis of MM is confirmed if >10% clonal plasma cells
- Clonality → clg by immunoperoxidase or immunofluorescence
- BM biopsy may be preferable
- When both are performed \rightarrow record the highest number of PC

Cytogenetic Studies

- Standard metaphase cytogenetics
 - Low yield; abnormal karyotype ~30%
 - Still prognostic

FISH on sorted plasma cells

 Probe for t(4;14), t(14;16) and 17p13

Other Tests for Prognosis

- Serum b2-microglobulin: ISS
- Serum LDH: useful in risk assessment
- C-reactive protein → not useful in risk assessment but helpful when infection is suspected

Imaging Studies in Myeloma

Skeletal survey

 PA chest, AP and lateral skull, C, T, L spine, humeri, femora and AP pelvis

• MRI

- SBP: mandatory MRI of spine and pelvis
- SMM: recommend MRI of spine and pelvis

- Symptomatic myeloma:

- May be performed as a routine evaluation of spine and pelvis
- MRI mandatory to evaluate symptomatic patient to rule out nerve root or spinal cord compromise
- to differentiate osteoporotic from myelomatous compression fracture of spine
- -MRI may have prognostic significance

Imaging Studies in Myeloma

• PET-CT

- Definite role is yet to be defined
- Helpful for detection of extramedullary involvement

Other Diagnostic Considerations

- Anemia out of proportion of tumor load: look for other causes
- Hypercalcemia without typical bone lesions
 R/O hyperparathyroidism
- Consider AL when non-selective proteinuria, low ECG voltages, LVEF, CHF, hepatomegaly, elevated AP, GGT, carpal tunnel syndrome, peripheral or autonomic neuropathy
- Consider MIDD when non-selective proteinuria and no evidence of AL

Follow-up Investigation After Therapy

- Repeat serum and urine studies of monoclonal protein
- Bone marrow aspiration and/or biopsy is needed only to confirm CR
- No need to repeat metaphase karyotype, FISH, flow cytometry, bone imaging as a routine followup

Tests To Be Performed At Relapse

- Repeat serum and urine studies of monoclonal protein
- Prognostic significance of b2 microglobulin or ISS is unclear
- Elevated serum LDH confers poor prognosis
- Skeletal survey is indicated to detect possible lesions at risk for fracture
- Other imaging studies: only if clinically indicated

Tests To Be Performed At Relapse

Bone marrow aspirate and/or biopsy

- should be performed if suspicion of hyposecretory progression or of MDS
- Karyotype and FISH
- If not performed at baseline \rightarrow should be done
- If performed at baseline and normal \rightarrow repeat
- If performed at baseline and abnormal with high risk feature \rightarrow no need to repeat