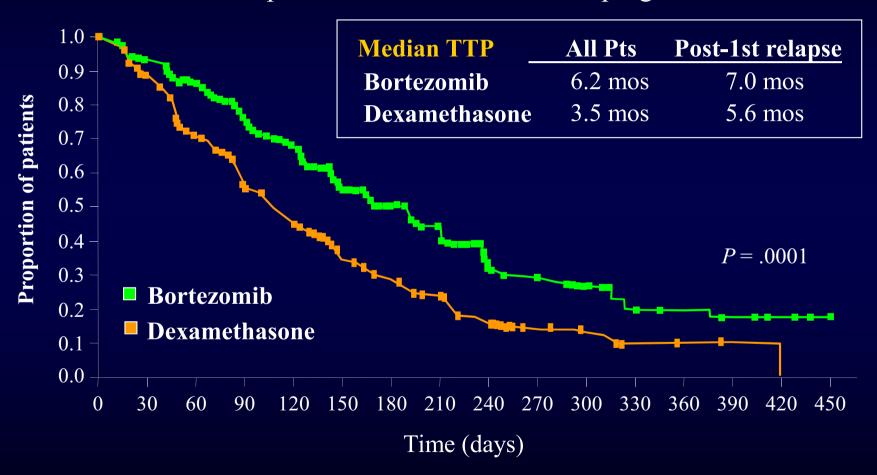

Novel Agents and Regimens for Relapsed and Refractory Multiple Myeloma

Robert Z. Orlowski, M.D., Ph.D.

Director, Myeloma Section

Associate Professor of Lymphoma/Myeloma, and Experimental Therapeutics; Division of Cancer Medicine

Making Cancer History®


2010 Guidelines

- Repeat primary therapy (if relapse occurs at > 6 mos)
- Bortezomib (cat. 1)
- Bortezomib/liposomal doxorubicin (1)
- Lenalidomide/dex (1)
- Bendamustine (2B)
- Bortezomib/dex
- Lenalidomide
- High-dose cyclophosphamide, or Cy-VAD
- Thalidomide, or thalidomide/dex
- Dex, or DCEP, or DT-PACE

Bortezomib vs. Dex

78% improvement in median time-to-progression

Richardson, PG et al. *N Engl J Med*. 2005;352:2487-2498. Copyright © 2005 Massachusetts Medical Society. All rights reserved.

Bortezomib/PLD vs. Bortezomib

Median progression-free survival

Bortezomib PLD + Bortezomib 9.3 months

Statistical analysis: HR (95% CI) 1.82 (1.41-2.35) P = .000004

Bortezomib Combination Data

Regimen	Phase	n	CR + PR	CR + nCR	Reference
Bortezomib	3	333	43 %	16 %	Richardson PG, <i>et al.</i> <i>Blood</i> 2007;110:3557–3560
+ Dex	3b			33 %	Mikhael JR, et al.
(after cycle 2 for PD or after cycle 4 for SD)	expanded access program	638	51 %	(CR + VGPR)	<i>Br J Haematol</i> 2009;144:169–175
+ Liposomal doxorubicin	3	324	52 %	17 %	Harousseau JL, et al. ASCO 2007. Abstract 8002.
+ doxorubicin + dexamethasone (PAD)	2	64	67 %	25 % (CR + VGPR)	Palumbo A, <i>et al.</i> <i>Ann Oncol</i> 2008;19:1160– 1165
+ intermediate-dose dex + cyclophosphamide (VCD)	2	54	82 %	16 %	Kropff M, et al. Br J Haematol 2007;138:330-337
+ melphalan				43 %	Dolumba A at al
+ prednisone + thalidomide (VMPT)	1/2	30	67 %	(includes VGPR)	Palumbo A, <i>et al.</i> Blood 2007;109: 2767–2772

Lenalidomide/Dex vs. Dex

Survival benefit retained despite 47% cross-over

- Median OS
 - Len/Dex: 38 months
 - Placebo/Dex: 31.6 months
 - P = .045

Other Lenalidomide Combinations

Lenalidomide	Phase	n	CR + PR	CR + nCR	Reference
+ melphalan + prednisone + thalidomide (MPTR)	2	44	75 %	34 % (VGPR + CR)	Palumbo A, Leukemia. 2010;24:1037- 1042.
+ bortezomib + dexamethasone (VRD)	2	64	69%	26 %	Anderson KC, et al. ASCO 2009. Abstract 8536.
+ cyclophosphamide + prednisone (RCP)	1/2	15	87 % (including MR)	NA	Reece DE, <i>et al</i> . ASH 2008. Abstract 1723.
+ doxorubicin + dex (RAD)	1/2	69	73 %	15 % (CR only)	Knop S, et al. Blood 2009;113:4137- 4143.

Upcoming Promising Approaches

- Novel single agents
 - Carfilzomib
 - Pomalidomide
- New combination regimens
 - Bortezomib + siltuximab / vorinostat / panobinostat/ tanespimycin / perifosine
 - Bortezomib/PLD + vorinostat
 - Carfilzomib + len/dex
 - Lenalidomide/dex + vorinostat / α-CS-1 / thalidomide

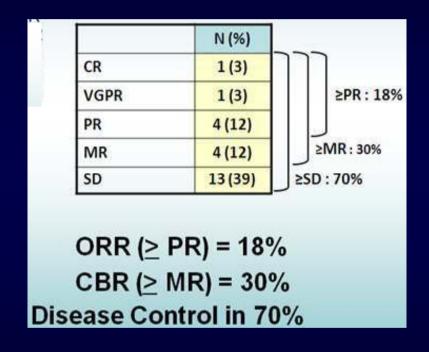
2009 ASH Abstract 303

PX-171-004, An Ongoing Open-Label, Phase II Study of Single-Agent Carfilzomib (CFZ) in Patients with Relapsed or Refractory Myeloma (MM); Updated Results From the Bortezomib-Treated Cohort

Siegel D, Wang L, Orlowski RZ, Kaufman JL, Stewart AK, Kukreti V, Alsina M, Jakubowiak AJ, Jagannath S, McDonagh KT, Belch A, Bahlis NJ, Shustik C, Le MH, Kunkel L, Bennett MK, Kauffman M, Vij R, and The Multiple Myeloma Research Consortium (MMRC)

Prior Therapies & Refractory Status

Median Number of Prior Therapies	3
Prior Treatments	N (%)
Bortezomib	35 (100)
Lenalidomide OR Thalidomide	27 (77)
Lenalidomide AND Thalidomide	10 (29)
Corticosteroid	34 (97)
Alkylator	31 (89)
Anthracycline	11 (31)
Stem Cell Transplant	28 (80)
	N (%)
Refractory to Last Therapy	14 (40)


Patient Characteristics

Prior Therapies Cobort 1 Cohort 2 20 mg/m² 20/27 mg/m² **BTZ-treated** BTZ-naive **BTZ-naive** (N=36)(N=59) (N=60) Median no. of prior therapies 2 2 3 (range) Prior treatments, % Bortezomib 100 3 Thalidomide (Thal) 53 68 69 Lenalidomide (Len) 39 46 68 31 20 32 Len and Thal 95 97 98 Corticosteroid 89 81 83 Alkylating agent 25 68 31 24 Anthracycline 81 78 Stem cell transplant Refractory to last therapy," % 42 49 40

"Most patients received a combination regimen as their last therapy

Responses

Outcomes

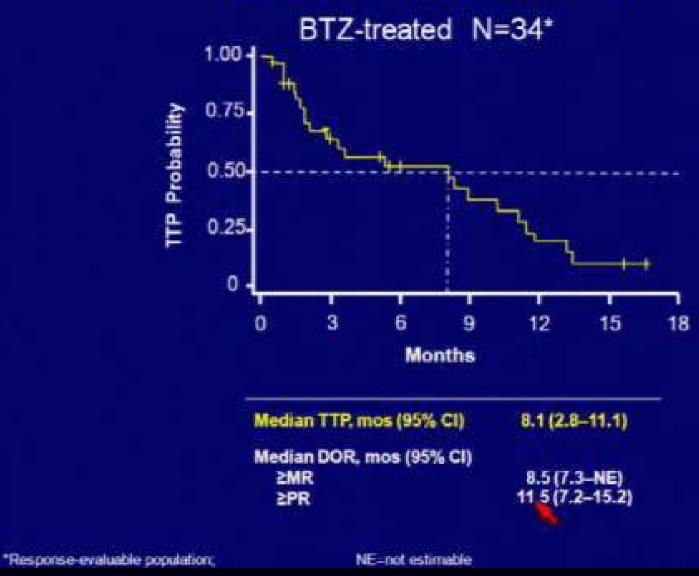
Single-agent Anti-tumor Activity

BTZ-treated Cohort

Cohort 1
20 mg/m ²
(N=34)*

CR	0% ORR
VGPR PR	9% ORR CBR
MR	12%] 33%
SD	35%
PD	32%
PU	32 /o

*Response-evaluable population



Time to Progression

	BTZ-treated (N=33)
Median Time to Progression	5.3 months
Median follow up	11.5 months

Time to Progression

Vij R, et al. ASCO 2010. Abstract 8000.

Adverse Events

Adverse Event*,1	Overall n (%)	≥ Grade 3 n (%)	
Fatigue	22 (63)	1 (3)	
Nausea	19 (54)	1 (3)	
Vomiting	14 (40)	1 (3)	
Dyspnea	13 (37)	2 (6)	
Diarrhea	12 (34)	0 (0)	
Increased Creatinine	12 (34)	1 (3)	
Upper Respiratory Infection	12 (34)	2 (6)	

Adverse Events* Reported in ≥20% or ≥Grade 3 in ≥5% (Safety Population)

Adverse Event* (N=155)	All Grades (%)	≥ Grade 3 (%)	
Pneumonia	11	11	
Anemia	32	9.7	
Neutropenia	25	9.7	
Thrombocytopenia	25	9.0	
Fatigue	54	5.2	
Dyspnea	34	3.9	
Upper respiratory infection	28	1.9	
Vomiting	25	1.9	
Diarrhea	28	1.3	
Headache	28	1.3	
Peripheral edema	21	1.3	
Nausea	45	0.6	
Pyrexia	27	0.6	
Increased creatinine	20	0.6	
Cough	27	0	

^{*}Includes both related and non-related AEs

Neuropathy

- Prior history of drug- or disease-related neuropathy: 83%
- Active grade 1/2 neuropathy at baseline: 69%
- Neuropathy adverse events noted on study
 - Grade 1/2 (n = 3): 8.6%
 - Grade 3 (n = 1): 2.9%
 - Grade 4: 0%
- No discontinuations or dose reductions for peripheral neuropathy

Treatment-Emergent Neuropathy Was Infrequent and Not Treatment Limiting

	Cohort 1 20 mg/m²		Cohort 2 20/27 mg/m²	
	BTZ-treated (N=36)	BTZ-naïve (N=59)	BTZ-naïve (N=60)	
Active Grade 1/2 peripheral neuropathy at baseline,* %	50	42	43	
Treatment-emergent neuropathy, % Grade 1/2 Grade 3 Grade 4	16.7 2.8 0	11.9 1.7 0	15 0 0	
Treatment discontinuations due to peripheral neuropathy, %	2.8%	0	0	

^{&#}x27;Grade based on physical assessment at screening (NCI-CTC scale)

2009 ASH Abstract 301

A Phase 1/2 Multi-Center, Randomized, Open Label
Dose Escalation Study to Determine the Maximum
Tolerated Dose, Safety, and Efficacy of Pomalidomide
Alone or in Combination with Low-Dose
Dexamethasone in Patients with Relapsed and
Refractory Multiple Myeloma Who Have Received Prior
Treatment That Includes Lenalidomide and Bortezomib

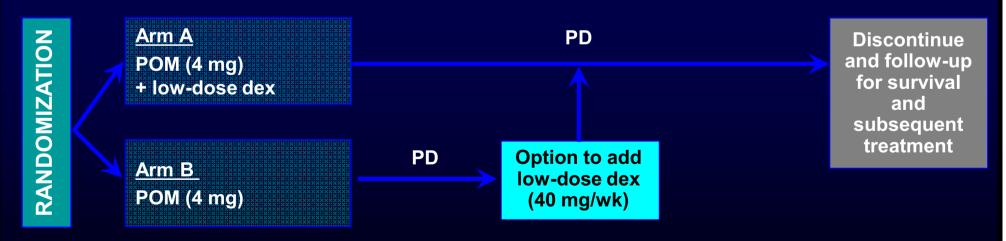
Richardson R, Siegel D, Baz R, Kelley SL, Munshi NC, Sullivan D, McBride L, Doss D, Larkins G, Jacques C, Donaldson A, and Anderson KC

Study Design

Phase 1 (MTD)

POM therapy (QD on days 1-21 of a 28 day cycle) Dose
2 mg
3 mg
4 mg
5 mg

Progressive disease (PD)


or no response after completion of 4 cycles

Option to add low-dose dex (40 mg/wk)

PD

Discontinue
and follow-up
for survival
and
subsequent
treatment

Phase 2 (Open Label)

Richardson P, et al. ASH 2009. Abstract 301.

Safety Profile

POM Dose

Adverse event, n	2 mg (n = 6)	3 mg (n = 8)	4 mg (n = 8)	5 mg (n = 10)
Neutropenia ^a	8	8	7	9
Thrombocytopenia ^a	2	6	0	0
Anemia ^a	2	7	2	0
VTE	1 (G2)	0	0	1 (G3)
Treatment-emergent SAEs	7	7	4	4
Deaths ^b	2	1	1	0
POM dose reduction	0	1	0	9

SAEs, severe adverse events; VTE, venous thromboembolism.

a. Grade 3/4; b. Includes deaths occurring at least 28d after last treatment (both due to rapid PD).

Best Responses

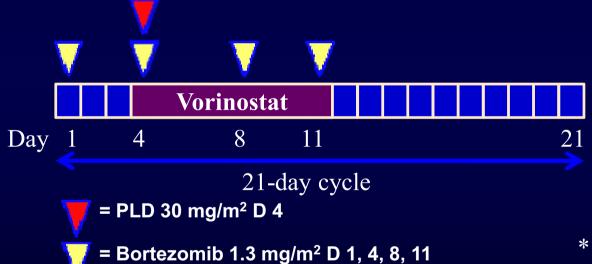
POM Dose (± Dex)	Best Response ^{a[1]}
2 mg (n = 6)	1 PR, 1 SD, 1 PD, 3 NE
3 mg (n = 8)	1 CR, 1 MR, 5 SD, 1 NE
4 mg (n = 8)	2 PR, 3 MR, 1 SD, 2 NE
5 mg (n = 10)	3 PR, 2 MR, 3 SD, 1 PD, 1 NE

CR, complete response; MR, minimal response; NE, not evaluable; PD, progressive disease; PR, partial response; SD, stable disease. a. As measured using modified EBMT criteria^[2,3] every 28d.

- 7/25 evaluable pts (28%) ≥ PR; 13/25 pts (52%) ≥ MR^[4]
- 15 pts received dex in addition to POM for either lack of response or PD; 8/15 pts (53%) improved response after dex added, with durability of response also improved from 13.5 to 16.9 wks^[1]

^{1.} Richardson P, et al. ASH 2009. Abstract 301. 2. Bladé J, et al. Br J Haematol. 1998;102:1115-1123. 3. Richardson PG, et al. N Engl J Med. 2003;348:2609-2617. 4. Anderson KC, et al. Leukemia. 2008;22:231-239.

2009 ASH Abstract 306


Vorinostat in Combination with Pegylated Liposomal Doxorubicin and Bortezomib for Patients with Relapsed/Refractory Multiple Myeloma: Results of a Phase I Study

Voorhees PM, Gasparetto C, Richards KL, Garcia R, Strader JS, Ferraro M, MacLean J, Winans D, Moore DT, Dodd A, Foster MC, Gabriel DA, Shea TC, Serody J, van Deventer HW, Rizvi S, Orlowski RZ, and Hurd DD

Study Design

• Multi-center phase I trial targeting relapsed and/or refractory myeloma

Dose Level	Vorinostat* D 4-11†
1	200 mg
2	300 mg
3	400 mg

* Vorinostat dosed 2 hours prior to PLD

Response Rate

• ORR 78% (7/8); 1 non-responder in cohort 1

Dose Level (# evaluable pts)	Response	
1 (N=3)	2 PRs, 1 PD [†]	
2 (N=3)	1 CR, 1 VGPR‡, 1 PR	
3 (N=2)	2 VGPRs‡	

- † Disease refractory to prior bortezomib-based therapy and VAD
- ‡ 2 VGPRs with unmeasurable disease by SFix and UFix awaiting bone marrow confirmation of response depth

2008 ASH Abstract 867

Preliminary Results of CNTO 328 (Siltuximab), An Anti-Interleukin-6 Monoclonal Antibody, in Combination with Bortezomib in the Treatment of Relapsed or Refractory Multiple Myeloma

Rossi J-F, Manges RF, Sutherland HJ, Jagannath S, Voorhees P, Sonneveld P, Delforge M, Pegourie B, Alegre A, de la Rubia J, La Police D, Bandekar R, Xie H, and Orlowski RZ

C0328T06 Study Design

INDUCTION: Bortezomib @ 1.3 mg/m² on days 1, 4, 8, 11, 22, 25, 29, 32 every 42 days for up to 4 cycles

290 patients with relapsed and/or refractory myeloma

Maintenance phase after induction dexamethasone added at progression

INDUCTION: Bortezomib as above + CNTO 328 @ 6 mg/kg on days 1, 15, and 29 for up to 4 cycles

Primary endpoint: PFS

Secondary: OS, ORR, safety, PK, PD

Responses

- Responses by EBMT criteria seen in 57%
 - CR or PR: 12 pts (3 with CR, 9 with PR)
- Median TTP 8.7 months
 - Range 1.2-22.4
- Randomized comparison of bortezomib
 versus CNTO 328 + bortezomib underway
 - Accrual completed

2009 ASH Abstract 304

Phase Ib Multicenter Dose Escalation Study of Carfilzomib Plus Lenalidomide and Low Dose Dexamethasone (CRd) in Relapsed and Refractory Multiple Myeloma (MM)

Ruben Niesvizky R, Wang L, Orlowski RZ, William Bensinger W, Alsina M, Gabrail N, Gutierrez A, Kunkel L, Kauffman M and The Multiple Myeloma Research Consortium (MMRC)⁸

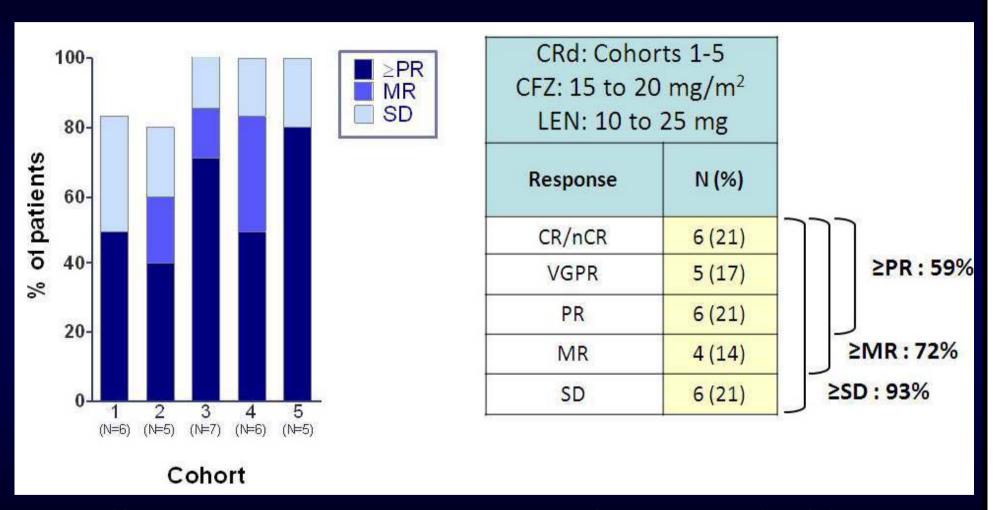
Study Design

- Multicenter phase Ib study
- Patients with 1-3 prior lines of therapy and relapsed multiple myeloma
- Cycles q 28 days

Days of Administration (dose escalation cohorts)				
Agent	Cycles 1-4	Cycles 5-8	Cycles 9-16	
CFZ	1, 2, 8, 9, 15, 16	1, 2, 8, 9, 15, 16	1, 2, 15, 16	
Len	1-21	1-21	1-21	
Dex 40mg	1, 8, 15, 22	1	1	

Prior Therapies

Prior Therapies	Median (range)
Number	2 (1-3)
	%
Bortezomib	72
Immunomodulatory Agents	87.5
Lenalidomide	62.5
Thalidomide	44
Corticosteroid	97
Alkylating Agents	78
Anthracycline	28
Stem Cell Transplant	78
Refractory: immediate prior therapy	47


Adverse Events

	n (%)	
Adverse Events	All Grades ≥ 20%	Grade 3 / 4 ≥ 5%
Fatigue	12 (44)	(#
Diarrhea	9 (33)	82
Neutropenia	9 (33)	6 (22)
Anemia	7 (26)	4 (15)
Back Pain	7 (26)	S 5 6
Cough	7 (26)	
Dyspnea	7 (26)	21 4 8
Thrombocytopenia	6 (22)	6 (22)
Arthralgia	6 (22)	(=
Rash	6 (22)	254
U Respiratory Infection	6 (22)	
Hyperglycemia	5 (18)	3 (11)

- No DLTs or grade 5 toxicities through first 5 cohorts (N = 27)
- No fatigue ≥
 grade 3 or
 thrombotic
 events

Activity

- All responses seen at <MTD; 29/32 pts evaluable
- Cohort 6 will use carfilzomib at 27 mg/m² in cycle 2 Niesvizky R, et al. ASH 2009. Abstract 304.

2009 ASH Abstract 305

Combined Vorinostat, Lenalidomide and Dexamethasone Therapy in Patients with Relapsed or Refractory Multiple Myeloma: A Phase I Study

Siegel D, Weber DM, Mitsiades CS, Dimopoulos MA, Harousseau J-L, Rizvi S, Howe J, Reiser D, Byrne C, Anderson KC, and Richardson P

Study Design

Multicenter, open-label, non-randomized, Phase I, doseescalation study in patients with relapsed / refractory MM

Dose level	Dosing regimen			
	Vorinostat (mg qd)	Lenalidomide (mg qd)	Dexamethasone (mg qd)	
	7 days on, 7 days off	x 21 days		
	(Days 1-7 and Days 15-21)	(Days 1-21)	(Days 1, 8, 15, and 22)	
	in each 28-day cycle	in each 28-day cycle	in each 28-day cycle	
1	300	10	40	
2	400	10	40	
3	400	15	40	
4	400	20	40	
5	400	25	40	

Study Dosing

Study Design

- Patients were sequentially enrolled into 1 of 5 escalating dose levels of vorinostat in combination with lenalidomide using a standard 3 + 3 design for ≤8 cycles
- At the MTD, the cohort was to be expanded to a total of 16 patients (6 + 10).

Table 1. Dose Escalation Scheme				
	Dasing Regimen (in each 28-day cycle)			
Dase Level	Vorinostat, mg QD (days 1-7, 15-21)	Lenalidomide, mg QD (days 1-21)	Dexamethasone, mg QD (days 1, 8, 15, 22)	
1	300	10	40	
2	400	10	40	
3	400	15	40	
4	400	20	40	
5	400	25	40	
QD-cace daily				

Response in Evaluable Patients

Best overall single response rate (CR+PR): 46% (13/28)

Response in Evaluable Patients

Best overall single response rate (CR+PR): 53% (16/30)

Response if Prior Lenalidomide

Response rate (non-refractory; CR+PR): 50% (3/6)
Response rate (refractory*; CR+PR): 17% (1/6)
Response rate (refractory*; CR+PR+MR+SD): 50% (3/6)

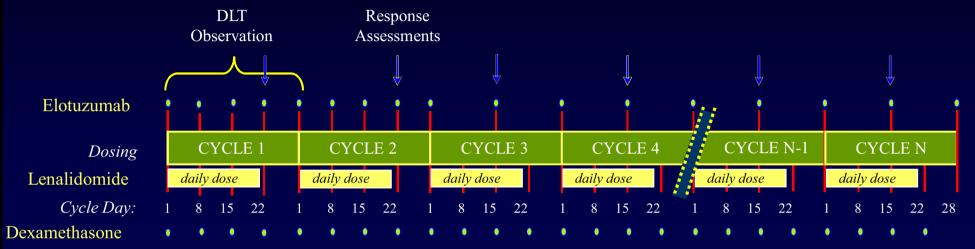
Siegel D, et al. ASH 2009. Abstract 305.

^{*}Lenalidomide refractory: no response to prior lenalidomide-containing regimens or progression on or ≤ 60 days of receiving lenalidomide-containing regimen, or relapsed, refractory, intolerant, and/or ineligible for other therapies, including bortezomib.

Response if Prior Lenalidomide

MR or better in nonrefractory patients: 57.1% (4/7) MR or better in refractory* patients: 33.3% (2/6)

^{*}Defined as no response on or progression within 60 days of receiving lenalidomide-containing regimen, or relapsed, refractory, intolerant, and/or ineligible for other therapies, including bortezomib.


2009 ASH Abstract 432

Phase 1/2 Study of Elotuzumab in Combination with Lenalidomide and Low Dose Dexamethasone in Relapsed or Refractory Multiple Myeloma: Interim Results

Lonial S, Vij R, Harousseau J-L, Facon T, Kaufman J, Mazumder A, Moreau P, Leleu X, Fry J, Singhal A, and Jagannath S

Elotuzumab, Lenalidomide, Low-Dose Dexamethasone in Rel/Refr MM: Phase 1/2

- Phase Ib: 3+3 dose escalation evaluating 5, 10, and 20 mg/kg elotuzumab + 25 mg len and low dose dex
 - First 5 patients were limited to 6 cycles; remaining 23 patients are being treated until disease progression or unacceptable toxicity
- Phase II: randomizing (1:1) approx. 60 pts to elotuzumab 10 vs 20 mg/kg

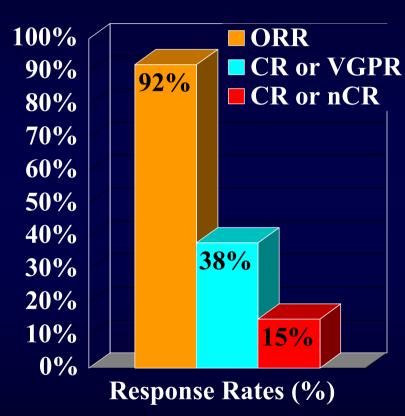
Response Rate

	Total Patients (%)	Patients w/o Prior Lenalidomide
Total treated population (≥1 dose)	28	22
ORR (≥PR; IMWG criteria)	23 (82%)	21 (95%)
VGPR	5 (18%)	5 (23%)

Response Rate: Phase Ib

Best Confirmed Response (IMWG Criteria) Lenalidomide-Naïve Total Patients (%) Patients (%) Total ITT population 28 22 ORR (≥ PR) 23 (82)21 (95)CR (4) (5) VGPR (25)(27)6

Lenalidomide/Thalidomide/Dex


	Lenalidomide (Days 1-21)	Thalidomide (Days 1-28)	Dexamethasone (c1, 2: Days 1-4, 9-12, 17-20; c3+: Days 1-4)
Dose level 1	15 mg	100 mg	40 mg
Dose level 2	25 mg	100 mg	40 mg
Dose level 3	25 mg	200 mg	40 mg

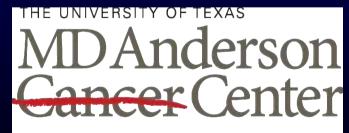
Cohort	Patients enrolled	DLT
1	3	0
2	6	Steroid-induced
3	9	1: G3 Rash; 1: G3 Hypertension

RTD: Efficacy

- Based on studies of the mechanisms of resistance to lenalidomide
- Phase I portion completed
- Predictable side-effects
- Evidence of antimyeloma efficacy

Targeting Kinesin Spindle Protein

- Inhibiting KSP stops myeloma cell division, causing apoptosis
- Phase I ARRY520: well tolerated
 - No neuropathy signal
 - Cytopenias and GI effects
- In phase I, two patients with PRs, several with MRs and SD
- Phase II portion started


Novel Agents and Regimens for Relapsed and Refractory Multiple Myeloma: Summary

Robert Z. Orlowski, M.D., Ph.D.

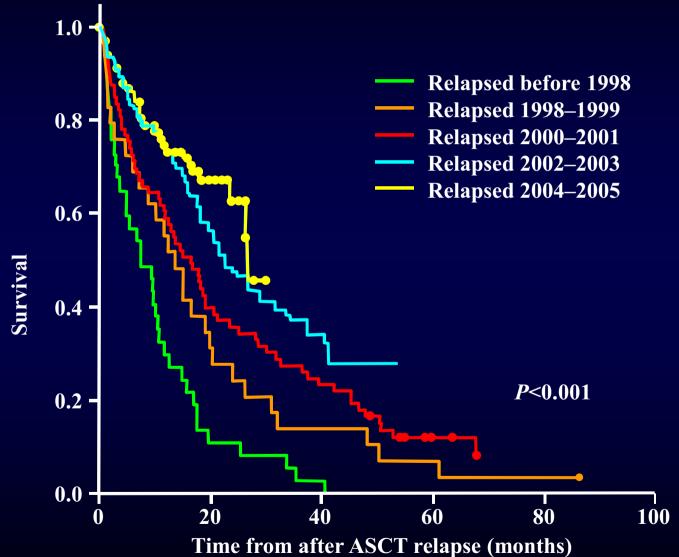
Director, Myeloma Section

Associate Professor of Lymphoma/Myeloma, and Experimental Therapeutics; Division of Cancer Medicine

Making Cancer History®

Relapsed/Refractory Therapy

- RDex and VDox are the standards of care in this setting
 - How well do they work with prior R and V?
- Novel single agents, such as carfilzomib and pomalidomide
 - Combine well with other agents
- New combinations, such as with siltuximab, elotuzumab, vorinostat



Other Options

- "Novel-er" agents on the way as well
 - ARRY520
- Add old agents that are new again to prior active regimens
 - Cyclophosphamide
- Mix and match agents that had been used in different combinations
 - If had RD, $VD \Rightarrow RVD$
 - If had RD, TD \Rightarrow RTD

Impact of Novel Agents at Relapse

Kumar, S et al. Blood <u>111</u>:2516-2520, 2008.

This research was originally published in Blood. © the American Society of Hematology.