Novel Three- and Four-Drug Combination Regimens of Bortezomib, Dexamethasone, Cyclophosphamide, and Lenalidomide for Previously Untreated Multiple Myeloma: Results from the Multi-Center, Randomized, Phase 2 EVOLUTION Study

Shaji Kumar,¹ Ian Flinn,² Paul G Richardson,³ Parameswaran Hari,⁴ Natalie Callander,⁵ Stephen J Noga,⁶ A Keith Stewart,⁷ Jonathan Glass,⁸ Robert Rifkin,⁹ Jeffrey Wolf,¹⁰ Jose Estevam,¹¹ George Mulligan,¹¹ Hongliang Shi,¹¹ Iain J Webb,¹¹ S Vincent Rajkumar¹

¹Division of Hematology, Mayo Clinic, Rochester, MN; ²Sarah Cannon Research Institute, Nashville, TN; ¹¹Dana-Farber Cancer Institute, Boston, MA; ⁴Medical College of Wisconsin, Milwaukee, WI; ⁵University of Wisconsin Comprehensive Cancer Center, Madison, WI;
⁶Sinai Hospital of Baltimore, Baltimore, MD; ⁷Mayo Clinic Arizona, Scottsdale, AZ; ⁸Louisiana State University Health Sciences Center, Shreveport, LA; ⁹Rocky Mountain Cancer Centers, Denver, CO; ¹⁰University of California San Francisco, San Francisco, CA; ¹¹Millennium Pharmaceuticals, Inc., Cambridge, MA

Introduction

- Bortezomib (VELCADE[®], V) and dexamethasone (D) combined with cyclophosphamide (C), or lenalidomide (Revlimid[®], R) has significant efficacy in untreated multiple myeloma (MM)^{1–3}
- Combining these agents in a novel 4-drug regimen, VDCR, may further improve the <u>depth</u> and <u>duration</u> of response
- The randomized, phase 1/2, multi-center EVOLUTION trial (NCT00507442) was designed to investigate VDCR, along with the two common, 3-drug regimens, VDR and VDC, in previously untreated MM

Richardson PG *et al.* Blood. 2010;116:679–86.
Reeder CB *et al.* Leukemia.2009;23:1337–1341.
Kumar S *et al.* Blood 2009;114: [Abs. 127].

Phase I

- In the phase 1 dose-escalation portion,¹ the MTD of cyclophosphamide in combination with VDR was evaluated
 - Recommended phase 2 dose of cyclophosphamide was 500 mg/m², the highest dose tested

VDCR was highly active and generally well tolerated

Phase 2 objectives

Primary objective

 Determine the combined rate of complete response (CR) plus very good partial response (VGPR) for VDCR, VDR, and VDC

Secondary objectives included:

- Safety and tolerability
- Rates of overall response (ORR: CR + VGPR + partial response [PR]), stringent CR (sCR), and CR / near-CR (nCR)
- Time to response and duration of response
- Feasibility of minimal residual disease (MRD) analysis by flow cytometry

Phase 2 treatment schedule

Induction x 8 3-wk cycles	V 1.3 mg/m ² days 1, 4, 8, 11	D 40 mg days 1, 8, 15	C 500 mg/m² days 1, 8	R days 1–14	
VDCR	\checkmark	\checkmark	\checkmark	✓ (15 mg)	
VDR	\checkmark	\checkmark		✓ (25 mg)	
VDC	\checkmark	\checkmark	\checkmark		
VDC-mod	\checkmark	\checkmark	✓ (+ day 15)		
Maintenance x 4 6-wk cycles	V 1.3 mg/m ² (days 1, 8, 15, 22)				

- Patients received standard supportive care including prophylactic acyclovir
- Stem cell mobilization was allowed any time after cycle 2 and ASCT any time after cycle 4

Patients

- ◆ Untreated MM with measurable disease and Karnofsky Performance Status ≥ 50%
- Patients included regardless of eligibility for ASCT
- Exclusion criteria included:
 - ANC < 1 x 10⁹ cells/L
 - Platelets < 70×10^9 cells/L
 - Renal insufficiency (serum creatinine > 2.5 mg/dL)
 - AST/ALT > 2 x ULN
 - Total bilirubin > 3 x ULN
 - Peripheral neuropathy Grade ≥ 2 (NCI CTCAE v3.0)¹

ULN = upper limit of normal

1. National Cancer Institute Common Terminology Criteria for Adverse Events (NCI CTCAE), Version 3.0. http://ctep.info.nih.gov/reporting/ctc.html

Assessments

 Response assessed every other cycle by IMWG Uniform Response Criteria¹ plus nCR²

 Central laboratory used for disease measurements and MRD assessment

 Responses determined using an automated computer algorithm to assure consistent assessment

- ◆ Toxicities graded by NCI CTCAE v3.0³
- Data cut-off: November 11, 2010

1. Durie BG *et al.* Leukemia 2006;20:1467–73.

2. Blade J *et al.* Br J Haematol 1998;102:1115–23.

3. National Cancer Institute Common Terminology Criteria for Adverse Events (NCICTCAE), Version 3.0. http://ctep.info.nih.gov/reporting/ctc.html

Baseline characteristics (N = 140)

Characteristic	VDCR (n = 48)	VDR (n = 42)	VDC (n = 33)	VDC-mod (n = 17)
Median age, years (range)	61.5 (41–81)	60 (42–75)	62 (40–75)	63 (40–72)
Myeloma type, %				
IgG / IgA	69 / 17	64 / 21	67 / 21	47 / 12
Light chain / other	15 / 0	14 / 0	9/3	35 / 6
ISS stage, %				
	33	38	33	47
II	46	43	33	35
III	21	19	33	18
Eligible for ASCT, %	96	98	94	82
High risk‡	15%	17%	23%	18%

[‡]High-risk defined as any del 13/–13q14 by conventional cytogenetics, any of t(4;14), t(14;16), or –17p13 by conventional metaphase or FISH and hypodiploidy by conventional metaphase cytogenetics analysis.

Patient follow up

	VDCR (n = 48)	VDR (n = 42)	VDC (n = 33)	VDC-mod (n = 17)
Median follow up, months	18.7	19.7	21.2	14.3
Median cycles (range)	5 (1–12)	6 (1–12)	6 (3–12)	6 (3–12)
Completed induction Completed maintenance	16 (33) 12 (25)	17 (40) 8 (19)	15 (45) 10 (30)	7 (41) 5 (29)
Proceeded to SCT	14 (29)	18 (43)	8 (24)	7 (41)

Time to treatment discontinuation (uncensored)

Best confirmed response at 4 cycles

Response, n (%)	VDCR (n = 42)	VDR (n = 42)	VDC (n = 32)	VDC-mod (n = 17)
CR	2 (5)	3 (7)	1 (3)	2 (12)
sCR	1 (2)	1 (2)	0	2 (12)
VGPR	11 (26)	10 (24)	3 (9)	5 (29)
≥ VGPR	13 (31)	13 (31)	4 (13)	7 (41)
≥ nCR	4 (10)	3 (7)	1 (3)	3 (18)
ORR (≥ PR)	33 (79)	30 (71)	20 (63)	14 (82)
Progressive disease	0	0	0	0

Patients categorized as VGPR include those who have no measurable M-protein but have not yet had bone marrow assessments to confirm CR/nCR status

Response determined according to automated computer algorithm

Best confirmed response across all cycles

Response, n (%)	VDCR (n = 42)	VDR (n = 42)	VDC (n = 32)	VDC-mod (n = 17)
CR	10 (24)	10 (24)	7 (22)	8 (47)
sCR	6 (14)	8 (19)	3 (9)	5 (29)
VGPR	14 (33)	11 (26)	6 (19)	1 (6)
≥ VGPR	24 (57)	21 (50)	13 (41)	9 (53)
≥ nCR	14 (33)	14 (40)	10 (31)	8 (47)
ORR (≥ PR)	36 (86)	35 (83)	24 (75)	17 (100)
Progressive disease	1 (2)	1 (2)	1 (3)	0

Patients categorized as VGPR include those who have no measurable M-protein but have not yet had bone marrow assessments to confirm CR/nCR status

Response determined according to automated computer algorithm

Safety profile (N = 140)

AE, n (%)	VDCR (n = 48)	VDR (n = 42)	VDC (n = 33)	VDC-mod (n = 17)
At least 1 grade \geq 3 AE	40 (83)	32 (76)	26 (79)	15 (88)
AE resulting in discontinuation	10 (21)	8 (19)	4 (12)	1 (6)
On-study deaths	2 (4)	0	0	0

Most common non-hematologic AEs

PN NEC, peripheral neuropathy not elsewhere classified: high-level term including peripheral sensory neuropathy, peripheral motor neuropathy, and peripheral neuropathy not otherwise specified

Hematologic toxicity

Febrile neutropenia reported in 8 (12%), 1 (2%), 2 (6%), and 1 (6%) patients in the VDCR, VDR, VDC, and VDC-mod arms, respectively (all grade 3/4 except 1 in VDCR arm and 1 in VCD-mod arm)

Stem cell mobilization and ASCT

	VDCR (n = 48)	VDR (n = 42)	VDC (n = 33)	VDC-mod (n = 17)
Patients undergoing stem cell mobilization with data available, n (%)	25 (52)	26 (62)	14 (42)	10 (59)
Median CD34+ cells yield, x 10 ⁶ /kg (range)	6.8 (0.3–21)	7.8 (2.2–25.9)	7.95 (3.1–17.6)	7.75 (2.1–20)
Patients with < 2.5 x 10 ⁶ /kg CD34+ cells during first attempt, n (%)	4 (8)	3 (7)	0	2 (12)
Patients undergoing ASCT with data available, n (%)	20 (42)	19 (45)	10 (30)	10 (59)

Progression free survival (uncensored for transplant)

*censored observation

Progression free survival (censoring at transplant)

*censored observation

Overall survival

Outcomes in patients < 65 years

Best confirmed response, n (%)	VDCR (n = 27)	VDR (n = 27)	VDC (n = 20)	VDC-mod (n = 11)
CR	6 (22)	6 (22)	2 (10)	6 (55)
sCR	4 (15)	4 (15)	0	4 (36)
VGPR	9 (33)	10 (37)	3 (15)	1 (9)
≥ VGPR	15 (56)	16 (59)	5 (25)	7 (64)
≥ nCR	8 (30)	12 (44)	4 (20)	6 (55)
ORR (≥ PR)	22 (81)	24 (89)	14 (70)	11 (100)
Stable disease	2 (7)	1 (4)	4 (20)	0
Progressive disease	1 (4)	1 (4)	0	0

Patients categorized as VGPR include those who have no measurable M-protein but have not yet had bone marrow assessments to confirm CR/nCR status 5 patients were not evaluable Response determined according to automated computer algorithm

Detection of minimal residual disease

- Flow cytometry based assessment of marrow aspirates from screening and suspected CR
- Samples in fixative, shipped to central lab for analysis in < 48 hr
- CD38, CD45, CD138, CD19, CD56, kappa / lambda

Patients enrolled on study	Enrolled pts that submitted screening samples	Percentage
159	155	97%
# patients ≥ CR in expansion arms	# ≥ CR patients that submitted MRD sample	
35	28	80%

MRD negativity across arms

Response by algorithm (overall population), n (%)	VDCR (n = 42)	VDR (n = 42)	VDC (n = 32)	VDC-mod (n = 17)	TOTAL
CR	10 (24)	10 (24)	7 (22)	8 (47)	35
MRD sampling					
Patients ≥CR providing MRD sample, n (%)	10 of 10 (100)	7 of 10 (70)	4 of 7 (57)	7 of 8 (88)	28
Patients ≥CR MRD –ve, n (%)	5 of 10 (50)	6 of 7 (85)	0 of 4 (0)	2 of 7 (29)	13 of 28 (46)

Conclusions

- Of the four regimens studied, VDC (mod) and VDR appear highly active with reasonable toxicity profile representing excellent induction regimens
- VDCR and VDC (initial) while effective do not appear to have any striking advantages over VDR and VDC (mod) in efficacy or toxicity
- Phase III studies should compare VDR and VDC (mod), and assess the impact of the differences in VGPR, MRD-negative state and PFS seen here

Additional Conclusions

- Among those who provided samples, almost half of the patients with ≥CR were MRD negative
- Rates of the most common non-hematologic AEs appear generally similar between treatment arms
- Overall rates of most hematologic AEs also appear largely similar between arms
 - Grade 3/4 neutropenia appeared more frequent with C-containing regimens

Acknowledgements: Participating Centers

David Avigan Beth Israel Deaconess Hospital

Michael Bar Hematology Oncology PC

Elizabeth Bengtson Dartmouth Hitchcock Medical Center

Manish Bhandari The Christ Hospital

Natalie Callander University of Wisconsin

Joseph Catlett Med Star Institute

lan Flinn Sarah Cannon Research Institute

Jonathan Glass Louisiana State University HSC

Cristina Gasparetto Duke University

Daren Grosman Memorial Cancer Institute

Nisreen Haideri / Delva Deauna-Limayo University of Kansas Medical Center

Parameswaran Hari Medical College of Wisconsin Shaji Kumar / Vincent Rajkumar Mayo Clinic Rochester

Stephen Noga Sinai Hospital Baltimore

Keren Osman Mount Sinai School of Medicine

Leslie Popplewell / Amrita Krishnan City of Hope Medical Center

Noopur Raje Massachusetts General Hospital

Paul Richardson / Jacob Laubach Dana-Farber Cancer Institute

Robert Rifkin Rocky Mountain Cancer Center

Entezam Sahovic Western Pennsylvania Hospital

Scott Smith Loyola University Chicago

Keith Stewart Mayo Clinic Arizona

Timothy Moore Mid Ohio Oncology/Hematology, Inc

Jeffrey Wolf University of California San Francisco Writing assistance was provided by Stephen Mosley and Catherine Crookes of KnowledgePoint360 Group Ltd, funded by Millennium and Johnson and Johnson Pharmaceutical Research & Development L.L.C.