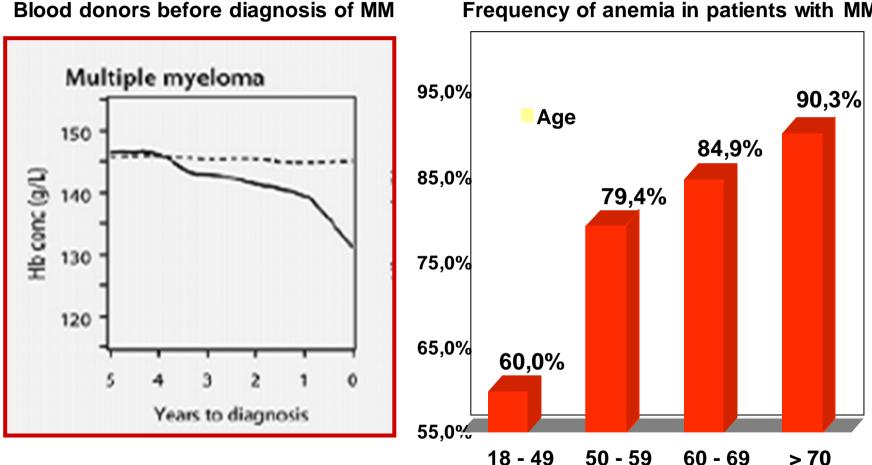
Management of anemia with erythropoiesis stimulating agents



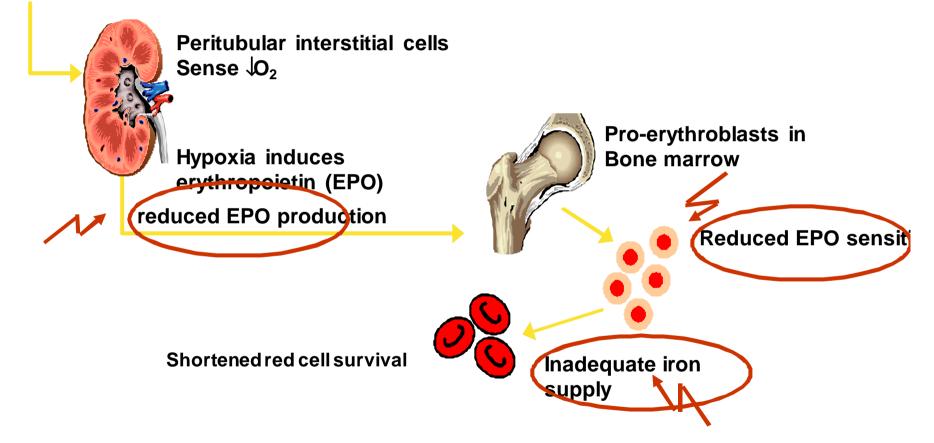
Speakers bureau AMGEN, Janssen Cilag, Vifor

Advisory boards

Vifor, Sandoz, Janssen-Cilag, AMGEN

Anemia – often present before diagnosis **Prevalence increases with age**

Frequency of anemia in patients with MM


Investigation of patients with anemia

Exclude/diagnose

- Vitamin B12 and folate deficiency
- Iron deficiency
- Severe infection
- Hemolysis
- Blood loss
- Bone marrow insufficiency
- DIC
- Congenital anemia
- Distinguish between anemia of myeloma and chemotherapy associated anemia.
- Consider that MDS may occur concomitantly with myeloma

'Anemia of myeloma' – usually multifactorial in pathogenesis

Decreased oxygen delivery to the kidneys

Important causes of anemia in multiple myeloma

- ↑ Inflammatory cytokines (e.g. IL-1, TNF, IFN-γ) and hepcidin induction – impaired iron utilisation
- \downarrow Erythropoeitin production
- ↓Number of erythroid precursors
- ↓Sensitivity of erythroid precursors towards erythropoietin
- Fas-L and TRAIL induced apoptosis of erythroid precursors
- Decreased osteoblast-induced stimulation of hematopoiesis
- Others
 - Renal insufficiency
 - Infection
 - Chemotherapy
 - Hypervolemia
 - Bone marrow infiltration
 - Hemolysis

Indications for use erythropoietins and for RBC transfusions

Consider ESAs

- chemotherapy induced anemia
- ,chronic' anemia of myeloma
- symptoms from anemia (Hb <11g/dl) or if Hb <10g/dl)</p>

Consider RBC transfusions

- symptomatic patients with Hb <8g/dl</p>
- > in case rapid symptom improvement important
- refractory to ESAs

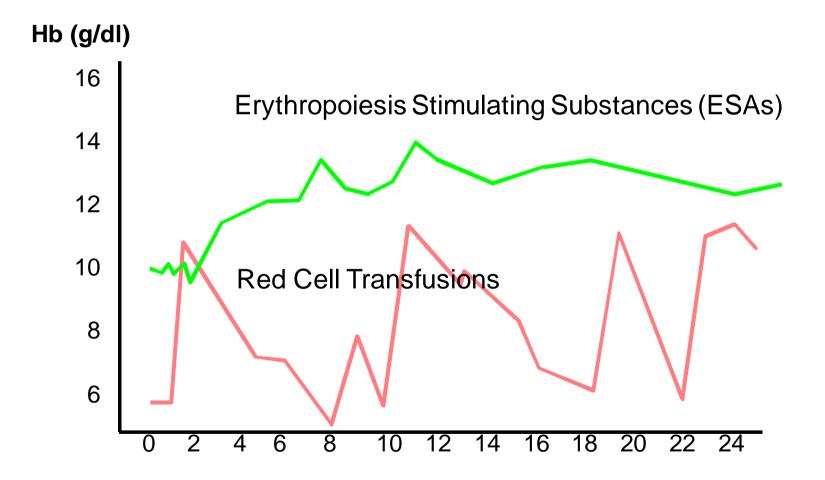
Treatment Options for Anemia

Blood Transfusions

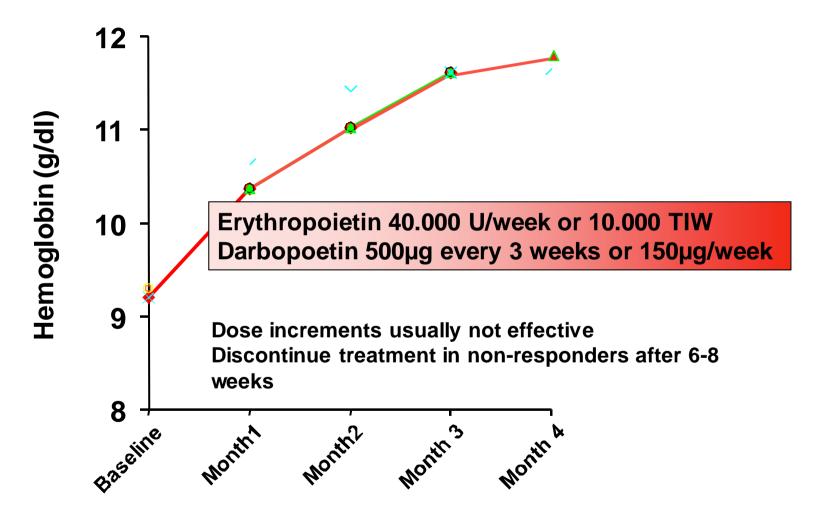
Erythropoietins

Hb <8g/dl

Immediate increase in Hb


Short effect

Several risks including VTE, infections, induction of lymphomas, and increased mortality


Hb <11g/dl or <10g/dl

- Slow increase in Hb
- Long term effect
- ↑ risk for thromboembolic complications
- ↑ risk for mortality in non-approved indications

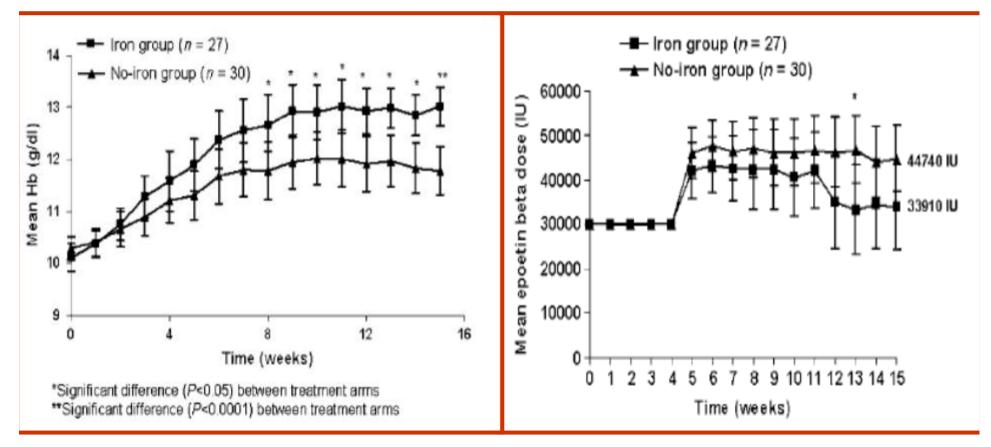
Treatment Options

Dose and duration of ESA therapy

Recommendations for ESA therapy

Recom- mendation	FDA	EMA	ASH/ASCO	NCCN	EORTC
Initiation of ESA therapy	< 10g/dl	⊴0g/dl	<10g/d	⊴1g/dl or 2g below baseline	⊴1g/dl
Target Hb level	Treat to a level to avoid RBC transfusions	<12g/dl	Lowest concentration to avoid RBC transfusions, reduce ESA dose when Hb exceeds 1g/dI in any 2 week period	Not stated	12-13g/dl
Suppleme ntary therapy	Not stated	Not stated	Iron repletion when indicated	Consider iv. iron* when TSAT <20% and ferritin ≤ 800µg/I	Address functional iron deficiency with iv iron

*with erythropoetic therapy


Iron deficiency by ISS stage in multiple myeloma

ISS Stage	AID TSAT <20%, Ferritin <30µg/I	FID TSAT <20%, Ferritin >30µg/I	No ID	Total
I	2 (4.8%)	10 (24.3%)	29 (70.7%)	41
II + III	7 (6.7%)	37 (35.6%)	60 (57.6%)	104
Total	9 (6.2%)	47 (32.4%)	89 (61.3%)	145

AID: Absolute iron deficiency FID: Functional iron deficiency

Epoetin beta and Intravenous Iron Sucrose vs. Epoetin beta (30.000 U once Weekly) only

65 Patients with MM, NHL, CLL iron sucrose (Venofer®) 100mg/week x6, followed by 100mg biweekly (until week 14)

Intravenous iron

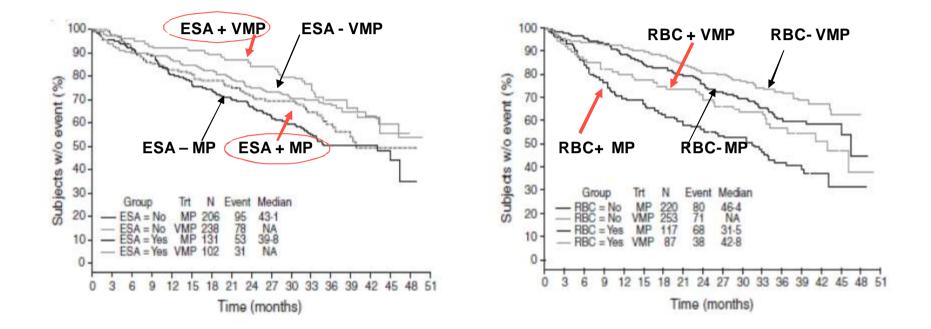
Iv. iron may be considered with erythropoietins in patients with anemia and functional iron deficiency: TSAT <20%, Ferritin <800µg/l

Benefits of ESA therapy

60-70% of patients will respond

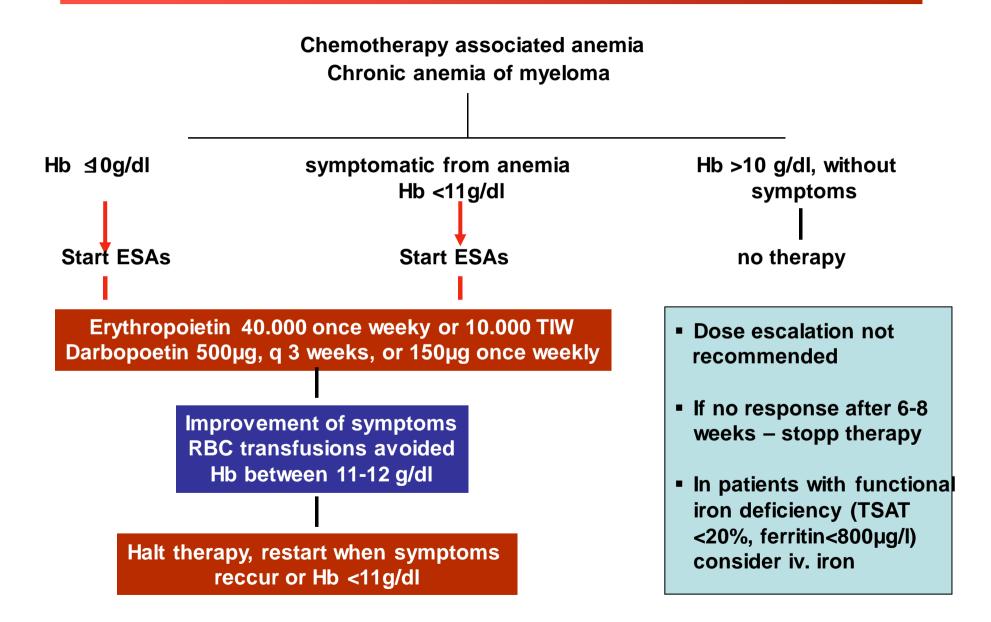
- good risk patients more likely to respond
- in aggressive disease response rate may be as low as 35%
- Reduction in transfusion need by ~> 70%
- Improved QoL in responders
- Response rate can be increased with iv. iron

Risks of ESA therapy


Increased TVT/PE rate (HR: 1.65) in cancer patients

- Risk higher in patients
 - treated with IMiDs
 - > on high dose dexamethasone
 - with additional risk factors for TVT/PE
 - receiving RBC transfusions
- No increased risk in some studies (VISTA, Lonial, Katodritou)
- Stimulation of malignant growth?

ESAs and survial


Author	Nature of study	Impact on OS
Österborg et al. 2006	Prospective, randomized, unplanned analysis	None
Baz et al., 2006	Retrospective	↑ OS
Kadotitrou et al., 2008	Retrospective	↓OS
Richardson et al., 2011	Retrospective	None

ESA treatment did not impair OS, RBC transfusions were associated with shortened OS (retrospective analysis)

Retrospective analysis of the VISTA study

Management of anemia with erythropoietins

