The evidence supporting continuous therapy in multiple myeloma

Sergio Giralt

Adult Bone Marrow Transplant Service Memorial Sloan-Kettering Cancer Center New York, NY, USA

Historical perspective

Study	Therapy	Years	Duration
SWOG 727	MP vs MPPro	68-70	To relapse
CALGB 7261	MP vs MCBP	71-72	To relapse
NCI MY-1	MP vs MCBVP	73-77	To relapse
CALGB 7761	MP vs MCBP	77-82	2 years
SWOG 7701	MP vs VMCP	77-79	2 years
MRC MYEL 4	MP vs VMP	80-82	Plateau – randomize
Harstad	MP vs VMCBP	81-82	12 months and randomize

Philosophical perspective

Pros

- Increases remission duration
- Maintains minimal disease burden preventing end-organ damage
- Targets "tumour cells" that leave "dormancy phase"
- May further decrease tumour burden after primary therapy

Cons

- Exposes all patients to the sideeffects of prolonged treatment
- Can result in resistant clones
- Late effects of long-term therapy
- Cost

Common wisdom dictates that PFS by itself may not justify continuous therapy for all patients with a specific disease. Either a survival or QoL benefit needs to be shown when comparing continuous therapy with therapy upon progression.

The question is made even more difficult if the issue of pre-emptive (i.e. early) intervention is included

Rationale for continuous treatment in the era of IMiDs® and proteasome inhibitors

- Primary therapy even with high-dose treatment results in a CR in < 50% of patients
- Longer treatment can result in better disease control and may be associated with
 - prolonged duration of response
 - increased depth of response
 - survival benefit????
- Use of different mechanisms of action of novel agents
- Tolerability of novel agents allows for longer-term treatment

Potential risks of continuous treatment in the era of IMiDs® and proteasome inhibitors

- Adverse events related to long-term treatment
 - reduced QoL
 - impact on subsequent therapeutic options
 - second primary malignancies
- Reduced survival after relapse
 - selection of resistant clones
 - availability of non-cross-reacting agents

The facts.... just the facts....

Historical perspective

- Long-term alkylator therapy is associated with a higher risk of secondary MDS/AML
- Maintenance therapy with IFN in multiple randomized trials showed marginal benefit in PFS and no survival benefit. Compliance was poor¹⁻³
- Long-term steroid therapy is potentially beneficial⁴

Maintenance with IFN after ASCT Comparable Survival in MM

In a study of 899 patients, HDT (melphalan 140 mg/m² + TBI 12 Gy) vs standard dose VBMCP therapy showed no benefit for IFN maintenance

Comparable survival in MM with or without IFN

	CR (%)	PR (%)	PFS (months)	OS (months)
ASCT	17	93	25 p = 0.05	62 p = 0.8
VBCMP	15	91	21	53
+ IFN			23	59
– IFN			18	

p = NS

 52% of VBCMP patients had salvage ASCT → 59% of whom had a PR (median OS 30 months) vs 23 months in patients who received non-transplant salvage therapy (p = 0.13)

Treatment strategy

Consolidation regimens post-ASCT improved response rates

Patients (N)	Consolidation	CR/nCR/sCR pre- consolidation (%)	CR/nCR/sCR post- consolidation (%)	Other outcome measures reported
330¹	Bortezomib single agent x 6 cycles vs no consolidation	20 vs 19 (p = NS)	49 vs 33 (p = 0.01)	6% vs 12% progression between 3 and 9 months (p = 0.08)
45 ²	VD x 6 cycles	25	51	_
31 ³	VRD x 2 cycles	35	52	_
464	VTD x 2 cycles	37	68	_
474 ⁵	VTD vs TD x 2 cycles	30 vs 10 (p < 0.001)	60 vs 44 (p = 0.001)	Median PFS: not reached vs 42 months (p = 0.006)
	X = 0, 0.00	(p : 0.00.)	(p 3.33.)	OS: 84% vs 74% at 44 months (p = NS)

^{1.} Mellqvist U-H, et al. Blood. 2009;114:[abstract 530]. 2. Sahebi F, et al. Blood. 2010;116:[abstract 2399]. 3. Roussel M, et al. Blood. 2010;116:[abstract 624]. 4. Roussel M, et al. Blood. 2010;116:[abstract 3041]. 5. Cavo M, et al. Blood. 2010;116:[abstract 42].

Upgrade in MRD negativity with consolidation: GIMEMA study

- VTD compared with TD consolidation (x 2 cycles starting within 3 months post-ASCT) on MRD in MM patients treated in the phase 3 GIMEMA trial
- Results (VTD, n = 35; TD, n = 32)
 - upgrade in MRD negativity from 43% to 67% for VTD vs from 38% to 52% with TD (p = 0.05 for 67% vs 52%)
 - PCR bone marrow analysis showed a median 5 log reduction in tumour burden with VTD vs a 1 log reduction with TD (p = 0.05)

Impact of thalidomide-based maintenance after ASCT

	Patients (N)	Duration of treatment	CR + VGPR (%)	EFS or PFS (%)	OS (%)
TT2 ^{1,2}	668	Double ASCT Thal vs no maintenance until progression	64 vs 43 (CR only) p < 0.001	52 vs 41 (5 years) p = 0.0005	57 vs 44 (8 year) p = 0.09 Sign in cyto abnormalities
IFM 99-02 ³	507	Double ASCT	67 vs 57 vs 55	52 vs 37 vs 36	87 vs 71 vs 77
	• 6/6	trials showed a	significant	benefit on F	PFS
Spencer ⁴	• 2/6	trials showed a	significant	benefit on (OS + (2)
Morgan⁵	1/6	showed a signifi	cant OS be	enefit in pat	ients
with cytogenetic abnormalities					
Lokhorst ⁶	556	Double or single ASCT Thal vs alpha-IFN until progression	66 vs 54 p = 0.005	34 vs 22 p < 0.001	73 vs 60 p = 0.77
Stewart ⁷	332	Single ASCT Thal + Pred vs observation until progression	Not reported	28 months vs 17 months p < 0.0001	Median not reached vs 5 years p = 0.18

Impact of bortezomib and thalidomide maintenance after ASCT

HOVON-65/GMMG-HD4 trial*

^{*} Patients received one (HOVON) or two (GMMG) treatments with high-dose melphalan with ASCT.

Phase III trials: maintenance therapy post-ASCT with Lenalidomide versus placebo

CALGB 100104:

IFM 2005-02: PFS significantly improved with lenalidomide maintenance

CALGB 100104: maintenance therapy with lenalidomide prolongs TTP

Post-ASCT consolidation or maintenance for patients with MM

- Post-ASCT consolidation strategies appear to increase depth of response, which may lead to improved long-term outcomes
- Post-ASCT maintenance strategies improve PFS/TTP
 The full impact on OS is not yet known and requires further follow-up

What continuous-treatment data are available?

Young, transplant eligible

"Continuous treatment" (early vs late ASCT)

ECOG-E4A03: survival probability of early transplant or continued therapy

Post-hoc analysis of a phase 3 trial where patients could choose to have ASCT or remain on continued therapy

	Survival probability (%)			
	Subgroup	< 65 years	> 65 years	> 70 years
No early transplant	All patients	78	69	70
	Rd	78	67	74
	RD	79	70	66
Early	All patients	94	83	_
transplant	Rd	94	75	_
	RD	95	92	_

MPR vs ASCT + MEL200: similar outcomes with MPR vs transplant

Phase 3 trial of Lenalidomide + Dex induction followed by MPR vs ASCT + MEL200 consolidation in younger patients

Outcome (%)	MPR (n = 117)	ASCT + MEL200 (n = 122)	p value
≥ VGPR	60	58	NS
CR	20	25	NS
2-Year PFS	73	78	NS
2-Year OS	95	97	NS

RVD + Lenalidomide continuous treatment vs ASCT + Lenalidomide maintenance

IFM/DFCI2009: phase 3 trial in younger patients

Can early SCT prolong EFS by at least 9 months?

What continuous-treatment data are available?

MM-015: phase 3 trial of MPR vs MP for long-term control in newly diagnosed MM

MM-015: landmark analysis 69% reduced risk of progression

Depth of response improved over time with continued therapy

MM-015: continued therapy with lenalidomide improved response (≥ VGPR) over time

Continuous therapy in non-transplant-eligible patients

Patients (N)	Duration of therapy	Median PFS (months)	OS
149 ¹	VT vs observation until progression	37 vs 27 (p < 0.0001)	85 vs 80% at 3 years p = NS
178 ²	VT vs VP up to 3 years	32 vs 24 (p = NS)	p = NS
459 ³	Lenalidomide vs placebo until progression	31 vs 14 $(p < 10^{-7})$	75–82% at 2 years p = NS

Continuous treatment in non-transplant-eligible patients with MM

Newly diagnosed MM Elderly, transplant ineligible

Continuous treatment

- Continuous treatment strategies using novel agents in non-transplant-eligible patients
 - increased depth of response
 - improved PFS, impact on OS to be determined
 - had manageable adverse event profiles

What continuous-treatment data are available?

Relapsed/refractory MM

Relapsed/refractory MM with RVD

Phase II Trial of RVD in RRMM for up to eight treatment cycles.

- Patients ≥ SD continue treatment beyond 8 cycles
- Primary end point: PFS at 6 months in 74% of patients

Relapsed/refractory MM with bortezomib + PLD

Phase III Trial of combination of bortezomib + PLD vs bortezomib in RRMM

- Treatment 8 cycles or until disease progression or unacceptable treatment-related toxicity
- Patients ≥ SD continue treatment beyond 8 cycles

Median PFS 9.0 vs 6.5 months (p< 0.000026)

Long-term treatment with Lenalidomide + Dex improved depth of response and prolonged OS

MM-009 and MM-010: subgroup analysis, Lenalidomide + Dex in relapsed/refractory patients

CR or VGPR achieved in 114 of 353 patients treated with Lenalidomide + Dex

Continuing Lenalidomide + Dex treatment resulted in additional late CR or VGPR

Continuous treatment with Lenalidomide + Dex beyond best response (≥ PR) prolongs OS

Relapsed/refractory MM

- Long-term treatment using Lenalidomide improved response in relapsed/refractory patients
- Fixed number of cycles followed by watchful waiting also reasonable for patients with good response to salvage and "indolent relapses"
- Prolonged therapy seems to be associated with improved PFS
 New agents and combinations may change this

Conclusions

- Continuous treatment strategies are being evaluated in all phases of myeloma disease, from smouldering myeloma to relapsed/refractory myeloma
- Continuous therapy appeared to
 - improve response rates
 - prolong PFS/EFS; the impact on OS remains to be determined
- All novel agents appear to have benefits with longerterm use. Management of adverse events is crucial

