

t(4;14) and genomic instability in high-risk myeloma

P. Leif Bergsagel, MD Mayo Clinic Arizona

Scottsdale, Arizona

Rochester, Minnesota

Jacksonville, Florida

t(4;14) dysregulates MMSET and FGFR3

Clinical detection of t(4;14) in MM Flow, clg-FISH, RT-PCR

Iμ/JH-MMSET on der(4)

Co-expression of FGFR3 and MMSET in MM patients

Better OS in t(4;14) with bortezomib induction

MAYO CLINIC

AVET-LOISEAU, JCO 2010

MAYO CLINIC

124 | NATURE | VOL 470 | 3 FEBRUARY 2011 MMSET regulates histone H4K20 methylation and 53BP1 accumulation at DNA damage sites

Huadong Pei¹, Lindsey Zhang²*, Kuntian Luo¹*, Yuxin Qin³, Marta Chesi⁴, Frances Fei², P. Leif Bergsagel⁴, Liewei Wang³, Zhongsheng You² & Zhenkun Lou¹

MMSET regulates histone H4K20 methylation and 53BP1 accumulation at DNA damage sites

MAYO CLINIC

Pei H, Zhang L, Luo K, Qin Y, Chesi M, Fei F, Bergsagel PL, Wang L, You Z & Lou Z. Nature 2011 (470)124

Patient Tumors are Stable Over Time

MAYO CLINIC

Summary of the Paired Analysis

More Than 3 Changes

MAYO CLINIC

Clinical course of a patient with t(4;14) MM

Chromosome 8

MAYO CLINIC

MAYO CLINIC Bulk Tumor Phenotype Detected by aCGH Common 5 CNA Subclone Untreated 27 CNA 1(4:14) (2 mos) Progenitors 2 CNA Natural Selection Rd (20 cycles) 5 CNA 27 CNA 1(4:14) VGPR 5 CNA Therapeutic Relapse 1 Germinal First Hit Common (4:14) 19 GNA Selection (23 mos) 13 CNA Center B-Cell **B-Cell** Progenitor Natural Selection PR-171 (3 cycles) nCR 1(4:14) 4 14) 5 CNA Vel + SGN-40 **Class Switch** Natural HD Dex Cyclo/Pred Recombination Selection Error Natural 5 CNA Selection Relapse 3 27 CNA 1(4:14) Therapeutic (38 mos) 4 CNA Selection MPV 5 CNA 19 CNA 1(4:14) Therapeutic CyBorD-T Selection 5 CNA 19 CNA Relapse 4 1(4:14) (48 mos) 39 CNA Keats JJ et al, unpublished

Effective re-treatment of MM with full dose bortezomib

Suboptimal bortezomib treatment alters disease course

Chesi et al, unpublished

Aggressive MM can stimulate or eradicate indolent MM

Chesi et al, unpublished

Drug response in transplanted Vk*MYC MM Remarkable activity of HDACi+Bortezomib

Chesi et al, unpublished

- Argues for combination vs sequential therapy (E.g., RVd instead or Rd followed by Vd)
- Selection of pre-existing resistant clones by low-dose maintenance therapy more likely with high-risk MM

- For drugs used in maintenance, the initial exposure should be when the tumor burden is lowest
- There are more genetic changes following relapse from melphalan then from agents that do not target DNA
- Melphalan may be harmful to high-risk MM (that are not in CR)
- Melphalan is best used following a maximal cytoreduction so that the fewest possible MM cells are exposed to its mutagenic effects
- Early treatment (e.g., smoldering MM) may preferentially eradicate "good" myeloma, making room for "bad" myeloma

Collaborators

Bergsagel Lab

Marta Chesi Jonathan Keats

Mike Kuehl

Jonathan Licht

Mayo Clinic

Keith Stewart Rafael Fonseca

Zhenkun Lou