Impact of risk status on treatment

G Morgan

What is the question being addressed

- Myeloma looks homogeneous down the microscope
- There are a range of survival outcomes that can't be recognised at disease presentation
- At a molecular level myeloma is heterogeneous
- Hypothesis
 - Molecular subgroups have different clinical outcomes
 - Targeting treatment to these groups will improve outcomes

The international staging system

ISS (OS)

Due to the number of events early analyses with low median follow up will have power to study impacts on higher risk subgroups

The Institute

Lessons from cytogenetics

- If we are to target treatment based on biology then we need to focus on the knowledge gained from genetic analysis.
- Translocations

10-15%	MMSET/Fgfr3
15-20%	cyclin D1
<4%	cyclin D3
<5%	maf
	10-15% 15-20% <4% <5%

- t(14;20)
- Hyperdiploidy

Molecular classification of myeloma

The acquisition of additional genetic events may impact on the prognosis determined by the initiating genetic lesions leading to myeloma.

Summary of myeloma gains and deletions

Chromosome	Deletions (%)	Chromosome	Gains (%)
1р	29.8 + 4.4 UPD	1q	36.0
6q	33.3	3	27.2
8p	25.4	5	33.3
12	21.9	7	21
13q	58.7	9	35.9
14q	38.1	11	24.6
16q	35.0 + 8.7 UPD	15	36.8
17p	7.0 + 1.75 UPD	19	33.3
18	15.8	21	12.3
20	12.3		
22	18.4		
<u>x</u>	28.0 + 21.0 UPD	x	8.7

Survival module in dCHIP

Associations of Genetic Lesions and Survival

Univariate Analysis

	PFS			OS		
FISH Lesion	Lesion Present	Lesion Absent		Lesion Present	Lesion Absent	
	Median PFS (months)	Median PFS (months)	p=	Median OS (months)	Median OS (months)	p=
Hyperdiploidy	18.9	17.8	0.110	49.7	43.7	0.150
t(4;14)	13.1	19.3	<0.001	27.7	50.9	<0.001
t(6;14)	27.2	18.2	0.361	not reached	47.7	0.426
t(11;14)	21.3	17.5	0.292	51.6	46.9	0.209
t(14;16)	13.6	18.6	0.028	32.9	48.3	0.025
t(14;20)	10.2	18.5	0.152	16.9	48.3	<0.001
del(1p)	19.0	18.7	0.701	36.4	47.7	0.216
+1q	13.8	22.1	<0.001	31.0	54.8	<0.001
del(13q)	16.3	20.1	0.002	40.9	52.1	0.005
del(16q)	19.9	18.2	0.200	43.7	48.3	0.462
del(17p)	14.7	18.3	0.002	26.7	48.5	<0.001
del(22q)	18.7	18.0	0.265	53.2	45.8	0.653

Multivariate Analysis

Variable	PFS			OS			
	Hazard Ratio	95% CI	p=	Hazard Ratio	95% CI	p=	
Adverse IGH Translocation	1.65	1.31 - 2.07	<0.001	1.54	1.16-2.03	0.003	
+1q21	1.46	1.21 - 1.76	<0.001	1.53	1.20 - 1.94	0.001	
del(17p13)	1.41	1.05 - 1.90	0.022	1.53	1.06 - 2.19	0.02	
ISS (I vs II)	1.36	1.07 - 1.74	0.012	1.79	1.24 - 2.58	0.002	
ISS (I vs III)	1.55	1.21 - 1.97	<0.001	2.69	1.89-3.84	<0.001	

Prognostic translocations

Prognostic copy number variants

Inter-relationship of adverse genetic lesions

Are all t(4;14) bad

Black = no 4;14 Red = 4;14 only Blue = 4;14 + either 17p- or 1q+ Green = 4;14 + 17p- and 1q+

1q+

OS of single adverse lesions compared to no adverse lesions

- 1. If you wish to determine risk status for a patient you need to determine whether one or more of the important prognostic variables is present.
- 2. Build model based on adverse IgH, 17p- and 1q+.

Effect of 0 vs 1 vs 2 vs 3 lesions on OS

0 vs 1 vs >1 adverse lesion and OS

- 1. Most high risk cases relapse by a year and a half.
- 2. Because of the number of events occurring, early analyses of trials with short median follow up will be predominently looking at the impact of treatment on high risk cases.
- 3. The impact of treatments on low risk disease will be seen in later analyses with longer follow up, which are needed to capture the number of events in this group of patients.

OS combining genetics and the ISS

1p32- intensive and non intensive

In depth mapping of 1p vs survival

Regions on 1p

Overall there are 3 main regions of interest:

1p32 (FAF1/CDKN2C) 1p22.1 (EVI5 to TMED5) 1p12 (FAM46C) homozygous deletions unknown deletion and mutation

Mapping Data Set	Total	Any 1p	Deletion	1p32 D	eletion	1p22.1 [Deletion	1p12 D	eletion
		n=	%	n=	%	n=	%	n=	%
MRC Myeloma IX	114	34	29.8	18	15.8	25	21.9	22	19.3
IFM	192	68	35.4	23	12	47	24.5	43	22.4
MMRC	254	78	30.7	32	12.6	56	22	54	21.3
Mayo Clinic	53	17	32.1	6	11.3	10	18.9	11	20.8
Carrasco	66	20	30.3	7	10.6	15	22.7	11	16.7
Overall	679	217	32	86	12.7	153	22.5	141	20.8

Inter-relationship of deletions on 1p

Screened 160 cases ndMM FAM46C mutations = 3.4%

Sample no.	Base Change	Amino-Acid Change	1p12 mapping
323	c357 C>G	F118L	no deletion
1527	c463 A>T	l154F	deleted
245	c537 C>A	F178C	no deletion
326	c872 A>G	Y290C	no deletion
127	c1068 C>G	Y355X	deleted

- 1. Need probes for 1p32 and 1p12
- 2. Integration of 1p- into the model didn't help overall
- Helped in defining a group of good risk with long median survivals

Impact on trial design

- Examining currently available datasets
- We are seeing considerable improvements in the outcome of low risk disease subsets
 - Median survivals are long in this subset
 - In responders they are even longer
 - CR in cases lacking adverse genetics with low B2M
 - Demonstrating efficacy of novel agents will require large studies and both early (median 3 yrs) and late (median 6 yrs) analyses
- Currently Minimal impact on "ultra high risk" subsets of disease
 - Defined by genetic events
 - Needs a new treatment strategy for this subset of disease
 - Design can be simple relatively small studies with short follow up
 - Needs a way of reliably identifying these groups at presentation
- Suggest we need to work on infra-structure of trial groups and to develop molecular diagnostic platforms

- We have discussed "prognostic factors" and their use for risk stratification.
- Predictive strategies are essential for the personalised treatment approach for myeloma.
- What is required is a "diagnostic test" that predicts the response to a specific therapy.
- Where are we in myeloma?

t(4;14) oncogene deregulation

If translocation is present Target FGFr3 tyrosine kinase Target MMSET histone methyl transferase Diagnostic test for the translocation

Myeloma Genome

Known IGH translocations in myeloma

Known mutated genes

Impact of NGS on our understanding

- 1. Multiple genetic changes
- 2. Not all driver mutations
- 3. Important to define relevance of a change >>

Campbell et al 2011

Potential clinical value of mutation testing

- BRAF mutations present in 4% of samples
 - Confirm this rate in representative trial samples
 - Demonstrate the mutation is a driver not a passenger event
- BRAF inhibitors have been developed
 - Functional in melanoma
- Strategy for myeloma
 - Mutation detection strategy
 - Screen presenting cases
 - Trials of BRAF inhibitors in mutation positive cases

The end

Targeting MAF

- Frequent upregulation of Deptor
- Frequent upregulation of the PI3K parhway
- Suggests targeting this pathway may be perticularly effective

of Cancer Research

Prognostic – RQ-PCR

- Multiplexed PCR
 reaction
 - FGFr3
 - MMSET
 - MAF
 - CyclinD1
- CD138 selected cells
- Extract RNA
- cDNA
- PCR

- In order to define clinical outcomes
- Not sufficient to simply report single variants
- Essential to report yes/no for each important variable
- Variables
 - t(4;14)
 - MAF
 - 1q+
 - 17p-
 - 1p- ?

The end

Chromosome X and the UTX gene

Somatic mutations of the histone H3K27 demethylase gene *UTX* in human cancer

Gijs van Haaften^{1,10,11}, Gillian L Dalgliesh^{1,11}, Helen Davies^{1,11}, Lina Chen¹, Graham Bignell¹, Chris Greenman¹, Sarah Edkins¹, Claire Hardy¹, Sarah O'Meara¹, Jon Teague¹, Adam Butler¹, Jonathan Hinton¹, Calli Latimer¹, Jenny Andrews¹, Syd Barthorpe¹, Dave Beare¹, Gemma Buck¹, Peter J Campbell¹, Jennifer Cole¹, Simon Forbes¹, Mingming Jia¹, David Jones¹, Chai Yin Kok¹, Catherine Leroy¹, Meng-Lay Lin¹, David J McBride¹, Mark Maddison¹, Simon Maguire¹, Kirsten McLay¹, Andrew Menzies¹, Tatiana Mironenko¹, Lee Mulderrig¹, Laura Mudie¹, Erin Pleasance¹, Rebecca Shepherd¹, Raffaella Smith¹, Lucy Stebbings¹, Philip Stephens¹, Gurpreet Tang¹, Patrick S Tarpey¹, Rachel Turner¹, Kelly Turrell¹, Jennifer Varian¹, Sofie West¹, Sara Widaa¹, Paul Wray¹, V Peter Collins², Koichi Ichimura², Simon Law³, John Wong³, Siu Tsan Yuen⁴, Suet Yi Leung⁴, Giovanni Tonon3.10, Ronald A DePinho⁵, Yu-Tzu Tai⁶, Kenneth C Anderson⁶, Richard J Kahnoski⁷, Aaron Massie⁷, Sok Kean Khoo8, Bin Tean Teh8, Michael R Stratton 1.9 & P Andrew Futreal¹

- Mutation screen identifies mutation of UTX in 10% myeloma cell lines (Futreal 2009)
- In our screen UTX deleted and expression changed

Impact of aberrant IgH rearrangements

We have identified evidence for an impact of *IGH* translocation on chromosomal abnormalities

MYC locus at 8q affected in 9% of samples CCND1 at 11q (6%), CCND3 at 6p (4%) FGFR3/MMSET at 4p (6%)

25% of samples with common CNAs associated with translocations.

Prognostic lesion

Prognostic regions verified by FISH analysis

Copy Number Abnormality	Prognostic Significance	Genes Identified	Gene Function
dal(1n)	Vac	FAF1*	Fas associated
del(1p)	ies	CDKN2C*	Cell cycle inhibitor
		CKS1B*	cyclin dependent kinase
1q+	Yes	ANP32E^	histone acetyltransferase inhibitor
del(8p)	No	NA	NA
del(13q)	No [#]	NA	NA
del(16q)	No	NA	NA
del(17p)	Yes	<i>TP53</i> *	regulator of transcription

* = significant by FISH

^ = significant by expression quartile analysis

= not significant by FISH when del(17p), t(4;14), t(14;16) and t(14;20) samples are removed from the analysis NA = not applicable

Combined Risk Group	Group	Median OS
	ISS I and no adverse lesions	Not reached
Favourable Risk	ISS I and 1 adverse lesion	Not reached
	ISS II and no adverse lesion	62.6
	ISS I and >1 adverse lesion	42.8
Intermediate Risk	ISS II and 1 adverse lesion	42.3
intermediaterxisk	ISS III and no adverse lesion	42.9
	ISS III and 1 adverse lesion	35.3
Liltro-High Pick	ISS II and >1 adverse lesion	25.5
	ISS III and >1 adverse lesion	14.4

