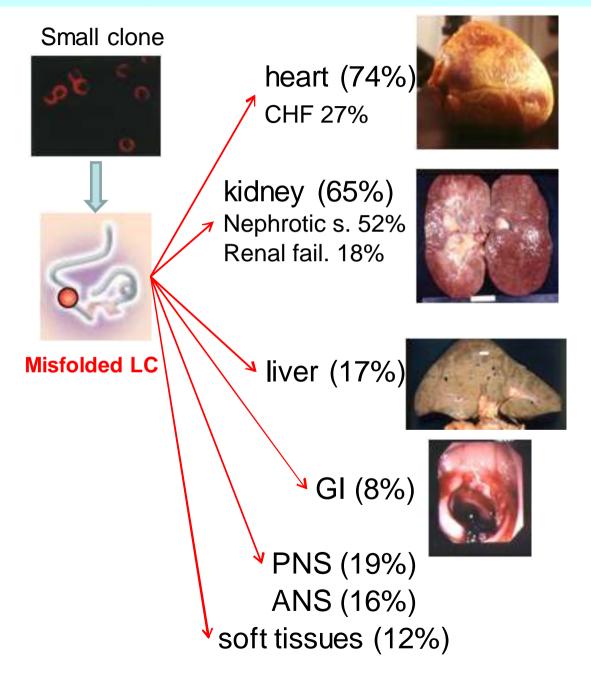


Management of AL amyloidosis in 2011

Giampaolo Merlini

gmerlini@unipv.it

Amyloid Research and Treatment Center Fondazione IRCCS Policlinico San Matteo University of Pavia, Italy



Disclosures

Honoraria:

Millennium, Novartis Diagnostics, Janssen

Systemic AL Amyloidosis: 8.9/million person-year

Management of AL amyloidosis in 2011

- AL amyloidosis is characterized by progressive damage of vital organs
- Patients are fragile and particularly sensitive to the toxic effects of chemotherapy
- Survival is determined by cardiac dysfunction and reduction of the FLC burden

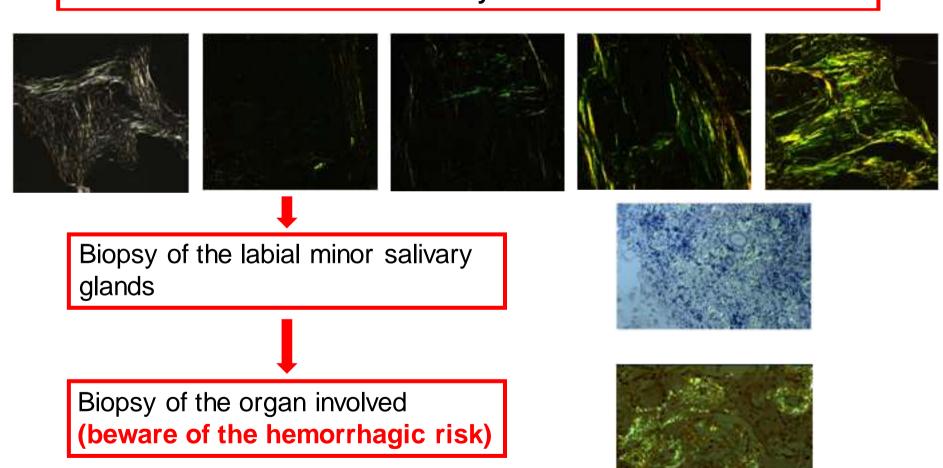
Management of AL amyloidosis in 2011

Early diagnosis: anticipate irreversible organ damage

DIAGNOSING AMYLOIDOSIS

Early red flags:

- increased levels of cardiac biomarkers (NT-proBNP)
 (monitor NT-proBNP in patients with MGUS)
 - urinary albumin > 300 mg/g creatinine
 - hepatomegaly or alkaline phosphatase elevation
 - progressive peripheral neuropathy
 - orthostatic hypotension, autonomic neuropathy (persistent diarrhea/constipation, impotence)
 - profound fatigue and unexplained weight los


Periorbital purpura 11%

Macroglossia 14%

Diagnosis of amyloidosis relies on tissue biopsy

IFix of serum and urine + serum FLC

Obtain fat and bone marrow specimens for Congo red staining Sensitivity ~ 90%

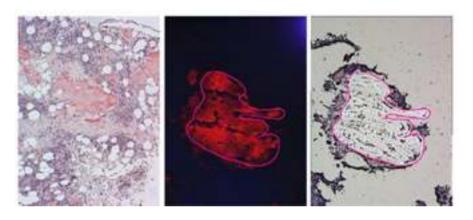
The most common types of systemic amyloidoses								
Туре	Precursor	Organs involved						
(abbreviation)	(site of synthesis)	Heart	Kidney	Liver/ GI	PNS/ ANS	Soft Tissue		
Immunoglobulin LC amyloidosis (AL)	Monoclonal LC (BM plasma cells)	X	X	X	X	X		
Reactive amyloidosis (AA)	SAA1 (liver)	(X)	X	X	Xans			
Senile systemic amyloidosis (SSA)	Transthyretin wild type (liver >90%)	X						
Transthyretin amyloidosis (ATTR)	Variant transthyretin, (liver >90%)	X	(X)		X	(X)		
Fibrinogen amyloidosis (AFib)	Variant fibrinogen α -chain (liver)		X					
Apolipoprotein AI amyloidosis (AApoA-1)	Variant Apo A-1 (liver, intestine)	X	X	X	(X)			

Clinically, it is difficult to distinguish between the various types of amyloidosis: MGUS coincidental with hereditary and senile amyloidosis in the elderly

The most common types of systemic amyloidoses				
Type (abbreviation)	Precursor (site of synthesis)	Established Therapy		
Immunoglobulin LC amyloidosis (AL)	Monoclonal LC (BM plasma cells)	Chemotherapy ASCT novel agents		
Reactive amyloidosis (AA)	SAA1 (liver)	Treat underlying diseases new drug		

Typing of amyloidosis is essential for the choice of therapy

amyloloosis (ATTK)	>100 amyloloogenic mutations (liver >90%)	new drugs
Fibrinogen amyloidosis (AFib)	Variant fibrinogen α-chain (liver)	Organ transplantation
Apolipoprotein Al amyloidosis (AApoA-1)	Variant Apo A-1 (liver, intestine)	Organ transplantation Supportive


Typing of amyloidosis

- Immunohistochemistry: unreliable in AL amyloidosis
- Electron microscopy + immunogold: reliable, limited by Ab availability
- MS based proteomics will become (is, Rome Symposium on Amyloidosis, 2010) the gold standard for classification of amyloidosis
 - When compared to immunohistochemistry, MS is
 - Objective-data driven
 - More specific
 - Reproducible
 - Open to further analysis: increase in disease knowledge

DNA analysis for hereditary amyloidosis

Classification of amyloidosis by laser microdissection and mass spectrometry-based proteomic analysis in clinical biopsy specimens

Vrana et al, Blood. 2009;114:4957-4959

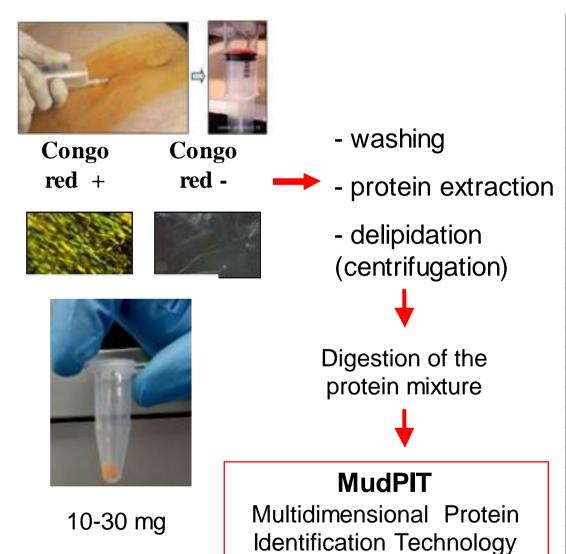
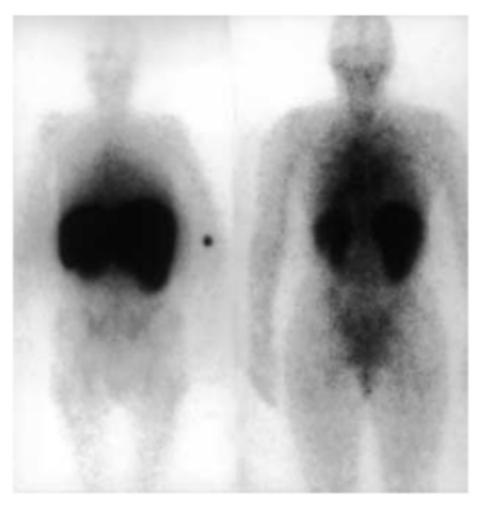

# Accession	MW	Control	1	2	3	4
1 ALBU_HUMAN	69 kDa		100% (36)	100% (35)	100% (36)	100% (35)
2 APOE_HUMAN	36 kDa		100% (19)	100% (17)	100% (18)	100% (17)
3 VTNC_HUMAN	54 kDa		100% (13)	100% (13)	100% (17)	100% (14)
4 KAC_HUMAN	12 kDa		100% (7)	100% (8)	100% (7)	100% (8)
5 APOA4_HUMAN	45 kDa		100% (15)	100% (19)	100% (17)	100% (13)
6 SAMP_HUMAN	25 kDa		100% (8)	100% (9)	100% (9)	100% (9)
7 C4BP_HUMAN	67 kDa		100% (11)	100% (10)	100% (12)	100% (10)
8 HBB_HUMAN	16 kDa		100% (4)	100% (8)	100% (9)	100% (7)
9 CLUS_HUMAN	52 kDa		100% (10)	100% (7)	100% (8)	100% (8)
10 CO6A3_HUMAN	344 kDa		100% (6)	100% (13)	100% (17)	100% (10)
11 APOA1_HUMAN	31 kDa		100% (7)	100% (5)	100% (9)	100% (7)
12 CO9_HUMAN	63 kDa		100% (5)	100% (5)	100% (5)	100% (7)
13 TRFE_HUMAN	77 kDa		100% (7)	100% (6)	100% (9)	100% (4)
14 HBA_HUMAN	15 kDa		Constitution (100% (4)	100% (4)	100% (4)
15 CO3_HUMAN	187 kDa		100% (3)	100% (4)	100% (8)	100% (5)

Table 1. The results of MS-based proteomic analysis compared with th original gold standard diagnosis

Case	Tissue	Original	MS		MS Ar	natysts	
	San Carlo	Diagnosis	Diagnosis	TTR	SAA	1GL	IGN
4	284		AL-IGK	1770000	10000	1000	
2	Lung	AL-TGK	AL-YOK				
3	DH: Strain	Mr-10K	AL-10K				
5	Bresst	100	AL-IGK			1	
- 6	Liver		AL/IGL	$\overline{}$			
7	Heart		AL-IG.				
6	Intestive Liver		AL-1GL AL-1GL				
10	Heart		AL-101				
:11	SP4		AL-103.				
12	Brain		AL-IGL				
13	Brain		AL-1GL AL-1GL			-	
15	Lung	AL-IGL	AL-1GL				
36	594	WF-10C	AL-10L				
17	Omenturn		AL-IGL				
18	Lymph node		AL-1GL			_	
20	Lung		AL-101.				
21	Liver		AL-103.			1	
22	Bone		AL-1GL				
25	Omentum		AL-10L AL-10L				
3	Lymph node		AL-1GL				
26	(91		. AA				
27	Intestine		AA				
28 29	104		AA AA				
30	Hourt	AA	AA				
.21	Kidney		,AA				
32	Kidney		AA.				
33	Midney		AA AA				
35	Heart		ATTR				-
36	Heart		ATTR				
37	Heart		ATTR				
30	Heart		ATTR				
29	Heart		ATTR		100		
40	Howt		ATTR			1	
41	Howt		ATTR			1	
42	Heart	CATTO	ATTR			10	
43	Intestine	ATTR	ATTR			1	
46	Intestine		ATTR			1	
45	tung		ATTR			10	
46	Heart		ATTR			10	
40	Heart		ATTR			K /-	
40	Intestine		ATTE		100	1	
49	Heart		ATTR			1	
50	Heart		ATTR			0	
		uniter of take o	unities of population	spectra.	dentified	for each	
	section.	24	CONTRACTOR OF STREET				ā.,
							+13

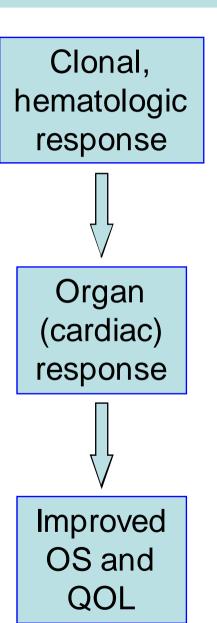
Novel approach for proteomic analysis of whole subcutaneous adipose tissue allows reliable typing of systemic amyloidoses


Brambilla, Lavatelli et al, 2011

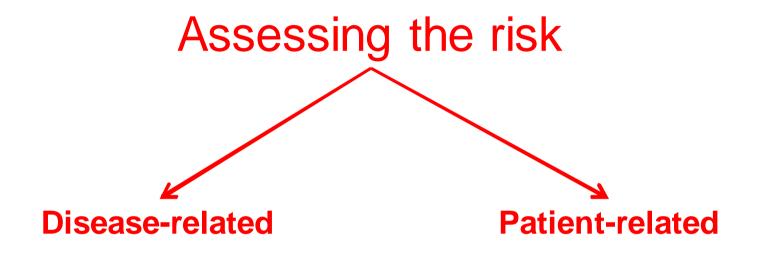
Case	confirmed diagnosis	lgLCk*	lgLCλ*	TTR	SAA
P6		13	212	6	6
P11		6	165	4	0
P2		0	130	0	0
P1		0	88	6	0
P9		13	61	9	0
P12	ALλ	8	50	0	0
P13	ALA	14	34	0	0
P8		7	33	0	0
P4		0	22	0	0
Р3		0	21	0	0
P5		0	13	0	0
P10		0	6	0	0
P15		372	0	0	0
P14	ALK	176	0	0	0
P25	ALK	44	0	0	0
P26		14	0	0	0
P19		4	0	1158	0
P20		0	0	185	0
P16	ATTR	4	0	145	0
P18		0	0	89	0
Р7		4	0	16	0
P22		0	0	0	638
P23		0	0	0	261
P17	SAA	10	0	0	166
P24		0	0	0	93
P21		0	0	0	71

Monitoring amyloid load - SAP scan

Amyloid load assessed by I123-SAP labelled scintigraphy


Radiolabelled SAP scintigraphy: posterior images of a 52-year-old woman with systemic AL kappa amyloidosis, before (left) and 1 year after (right) HDM chemotherapy. The serum concentration of free kappa light chains had fallen from 551 mg/l to 52 mg/l.

Lachmann et al, Br. J. Haematol, 2003, 122:78-84


Treatment of AL amyloidosis

Aim of therapy:

- prompt elimination of the misfolded light chains
- stabilization or reduction of cardiac biomarkers
- minimization of treatment toxicity
- support of the function of target organs

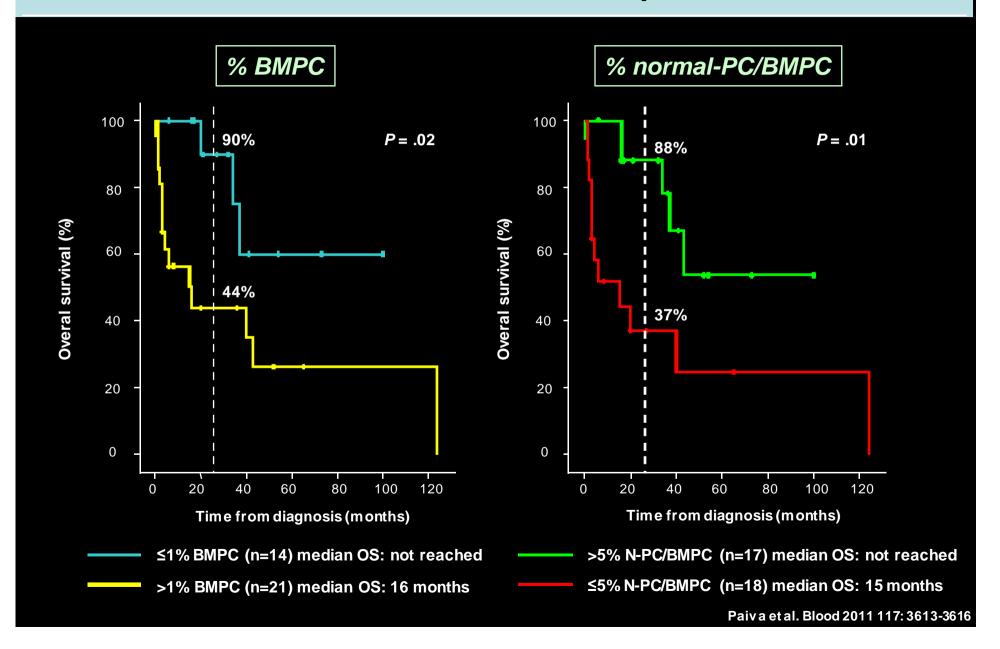
Chemotherapy for AL amyloidosis is highly individualized and risk-adapted

Characteristics of the clone

 PC number, cyclin D1, miRNA, ploidy, karyotypic aberrations......

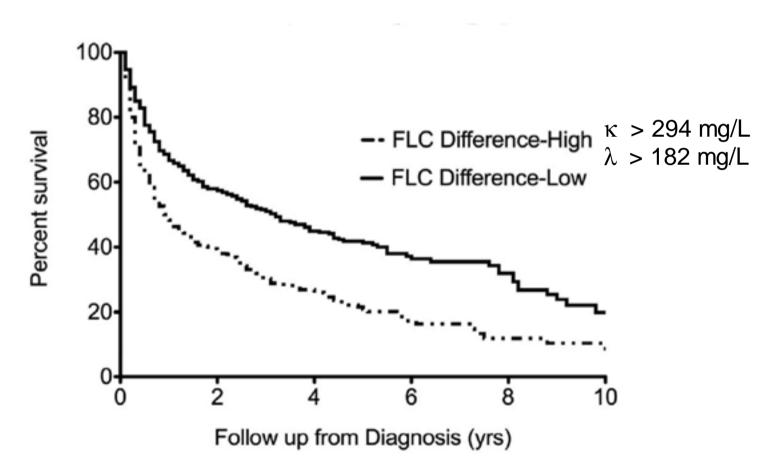
Characteristics of the LC

• **FLC burden**, germline genes usage, instability, cytotoxicity...


Severity of heart involvement

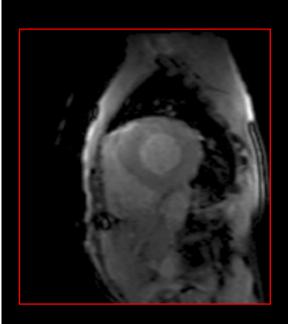
• Cardiac biomarkers, imaging

Other patient characteristics


• Age, renal function, other biomarkers (uric acid, β₂m...)

Overall survival according to the MFC immunophenotypic evaluation of the BMPC compartment

Serum immunoglobulin free light-chain measurement in primary amyloidosis: prognostic value and correlations with clinical features *Kumar et al, Blood. 2010;116:5126-9*


730 patients with newly diagnosed AL

In multivariate analysis, dFLC was independent of other prognostic factors

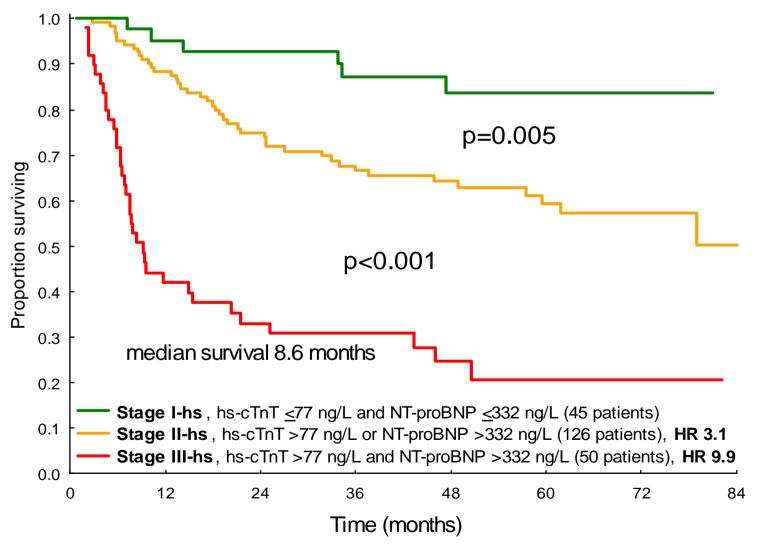
HEART INVOLVEMENT IN ALAND PROGNOSIS

85% of patients die a cardiac death

Amyloid GAD kinetic on MRI C. Rapezzi

- ventricular thickening
- diastolic (systolic) dysfunction
- pericardial effusion
- strain Doppler imaging
- low peripheral voltages at ECG

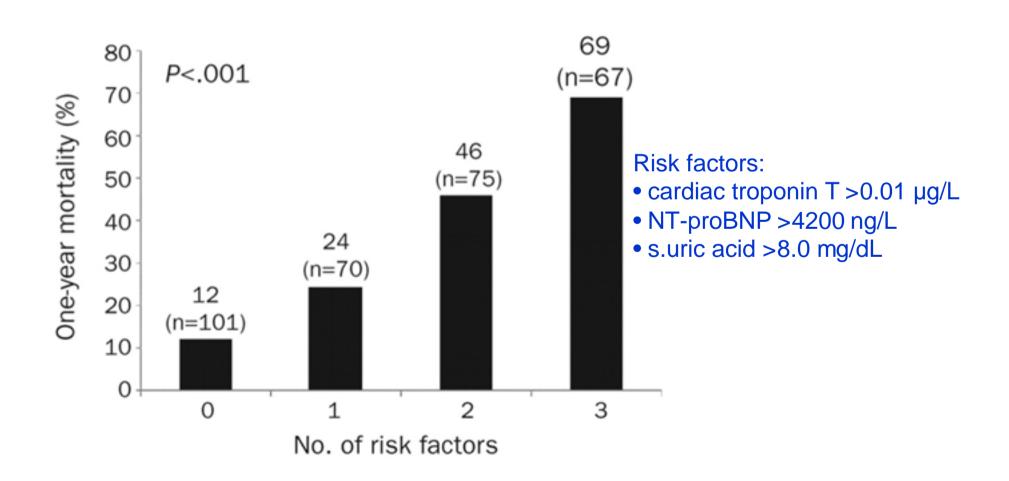
Cardiac biomarkers:


- Natriuretic peptide type B (NT-proBNP BNP)
- Troponins (cTnI or cTnT)
- High-sensitivity troponins

Staging system for AL amyloidosis
Dispenzieri et al, J Clin Oncol 2004; 22:3751-3757

The new high-sensitivity assay for cardiac troponin T (hs-cTnT) can be used for cardiac staging in patients with AL amyloidosis.

Palladini G...Schönland S, 13th IMW Paris 2011, P-439


Survival of 221 patients with AL amyloidosis according to hs-cTnT and NT-proBNP concentrations

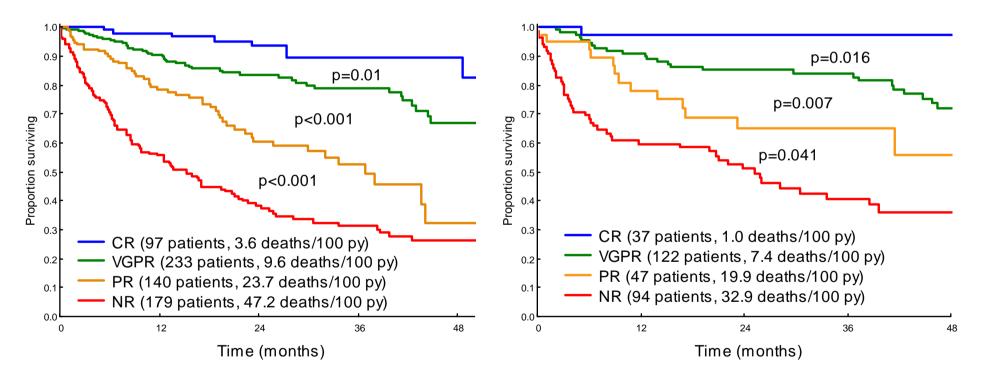
Recent improvements in survival in primary systemic amyloidosis and the importance of an early mortality risk score

Kumar et al, Mayo Clin Proc. 2011;86:12-8 used with Permission

313 patients seen during 2006-2009

Management of AL amyloidosis in 2011

Survival determinants: cardiac involvement and response to therapy


Validation of the criteria of response to treatment in AL amyloidosis

Palladini G, Dispenzieri A, Gertz MA, Wechalekar A, Hawkins PN, Schönland S, Hegenbart U, Comenzo R, Kastritis E, Dimopoulos MA, Jaccard A, Klersy C, Merlini G

XII Intl. Symposium on Amyloidosis, Rome 18-21 April, 2010

ASH 2010 Abstr. # 1364

816 patients from 7 centers (enrolled between 1995-2010) 649 (80%) with response data at 6 months.

Survival of 649 patients based on hematologic response at 6 months

Survival of 300 patients based on hematologic response at 3 months

Validation of the criteria of response to treatment in AL amyloidosis

Palladini G, Dispenzieri A, Gertz MA, Wechalekar A, Hawkins PN, Schönland S, Hegenbart U, Comenzo R, Kastritis E, Dimopoulos MA, Jaccard A, Klersy C, Merlini G

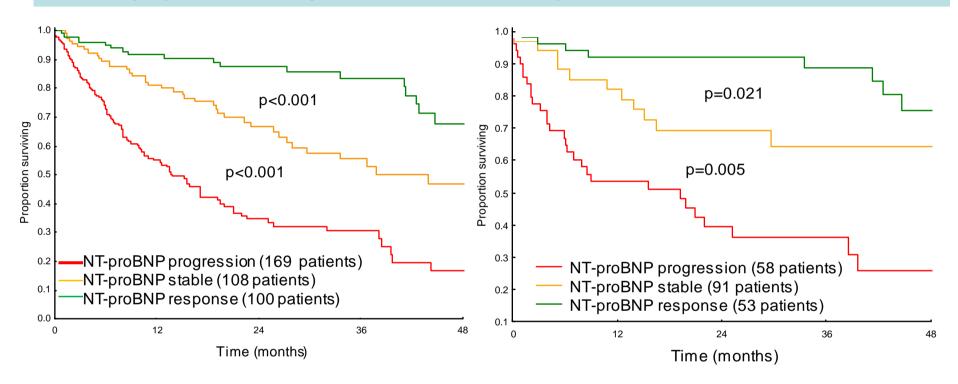
XII Intl. Symposium on Amyloidosis, Rome 18-21 April, 2010

ASH 2010 Abstr. # 1364

	New Response Criteria
aCR	negative serum and urine IFE normal κ/λ ratio
VGPR	dFLC <40 mg/L
PR	dFLC decrease ≥50%
NR	other

The use of dFLC (involved FLC-uninvolved) FLC compensates for altered FLC metabolism in patients with renal failure

Pinney et al, JCO 2011; 29:674-681


See also Poster 431 by Gibbs et al

Validation of the criteria of response to treatment in AL amyloidosis

Palladini G, Dispenzieri A, Gertz MA, Wechalekar A, Hawkins PN, Schönland S, Hegenbart U, Comenzo R, Kastritis E, Dimopoulos MA, Jaccard A, Klersy C, Merlini G

XII Intl. Symposium on Amyloidosis, Rome 18-21 April, 2010

ASH 2010 Abstr. # 1364

Survival of 377 patients with baseline NT-proBNP ≥650 ng/L according to NT-proBNP response and progression at 6 months

Survival of 202 patients with baseline NT-proBNP ≥650 ng/L according to NT-proBNP response and progression at 3 months

Caution using NT-proBNP in patients treated with IMiDs

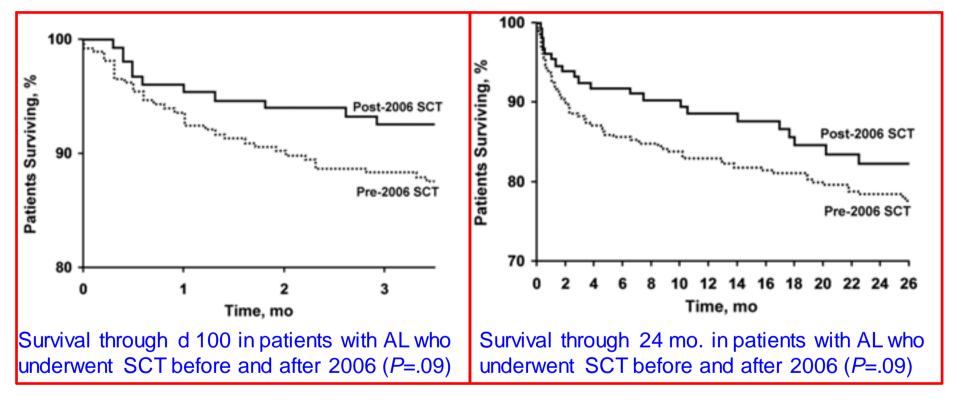
Tapan et al, Blood 2010; 116: 5071-2 Dispenzieri et al, Am. J. Hematol 2010; 85:757–9

Management of AL amyloidosis in 2011

Chemotherapy guided by frequent assessment of FLC and cardiac biomarkers

Early intervention with rapidly-acting agents is necessary to achieve optimal response

Available treatments for AL amyloidosis (ITT)


Melphalan and Dexamethasone

	Patient/ prev.tx	HR/CR %	Organ Resp %	TRM% (SAE%)	Author
Melph-predn-colch	50	NR	20	NR (8)	Skinner 1996
Melph-prednisone	148	28	18	NR (5)	Kyle 1997
Dexamethasone	44/19	40-53/10-16	12-16	5-8 (NR)	Gertz 1999
Dexa+maint. IFNα	87/14	33/15	45	7 (67)	Dhodapkar 2004
HDM/SCT (single center) HDM/SCT (single center) HDM/SCT (multicenter)	312	58/23	26	13 (NR)	Skinner 2004
	171	68/NR	NR	12 (NR)	Gertz 2004
	37	67/41	45	24 (NR)	Jaccard 2007
Melphalan-Dex	46	67/33	48	4 (11)	Palladini 2004
	43	68/32	39	2 (16)	Jaccard 2007

Trends in day 100 and 2-year survival after auto-SCT for AL amyloidosis: outcomes before and after 2006

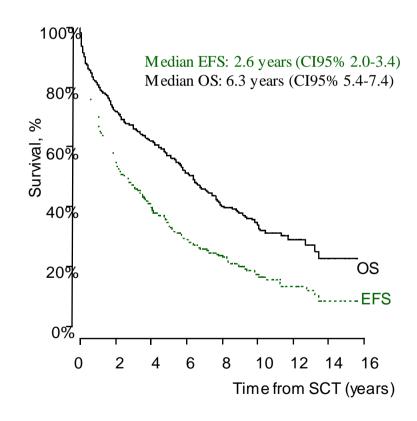
Gertz et al, Bone Marrow Transplant. 2010 Oct 11.

265 patients pre Jan 2006 - 157 patients post Jan 2006

On multivariate survival analysis, higher levels of serum troponin T and NT-proBNP were the only predictors of early mortality after SCT.

Short-term mortality reduced more than 40% after 2005.

Outcome of AL amyloidosis after high-dose melphalan and autologous stem cell transplantation: long-term results in a series of 421 patients


Cibeira et al, 13th IMW Paris, 2011 P-434

TRM: 11.4% overall, decreased to 5.6% in the last 5 years

340 (80%) evaluable at 1 year: 43% CR and 78% organ resp.

CR patients: median EFS 8.3 yrs and OS 13.2 yrs

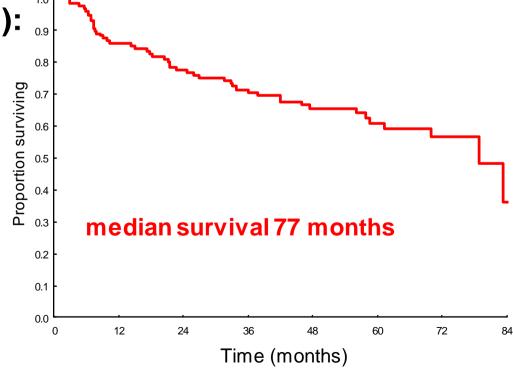
ITT Analysis (N=421)

Treatment of intermediate-risk patients with MDex

- 131 patients, median age 64y
- Mayo Stage I 29%, Mayo Stage II 71%
- Deaths at 3 months 2%, SAE 19%

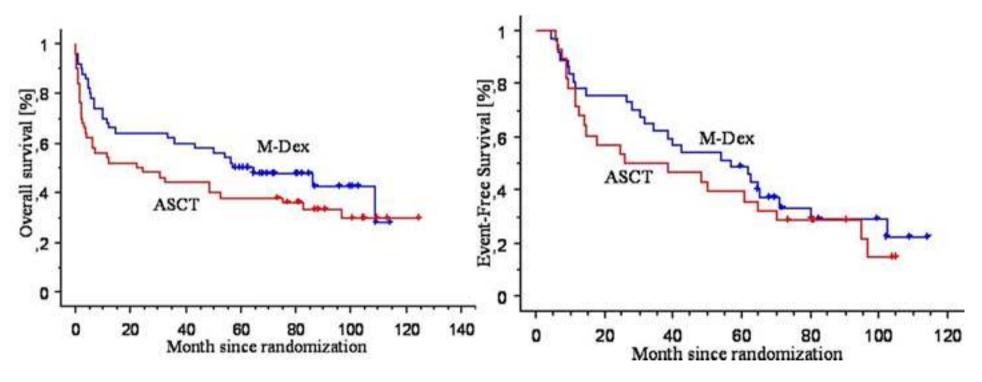
Hematologic Response (ITT):

CR: 26% VGPR: 24% 64%


PR: 14%

NR: 36%

Organ response


heart: 33%

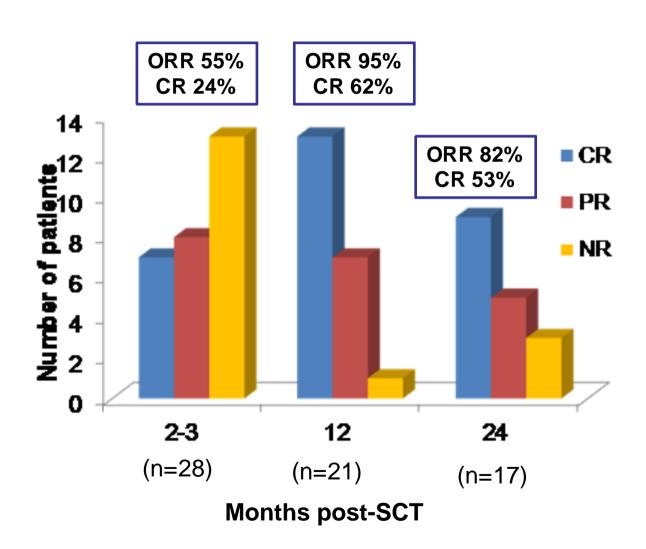
kidney: 34%

Autologous stem cell transplantation (ASCT) versus oral melphalan and high-dose dexamethasone in patients with AL (primary) amyloidosis: long term follow-up of the French multicentric randomized trial

Jaccard et al, N Engl J Med. 2007;357:1083-93 Jaccard et al, ASH 2010, Abstr. # 1344

Survival according to treatment

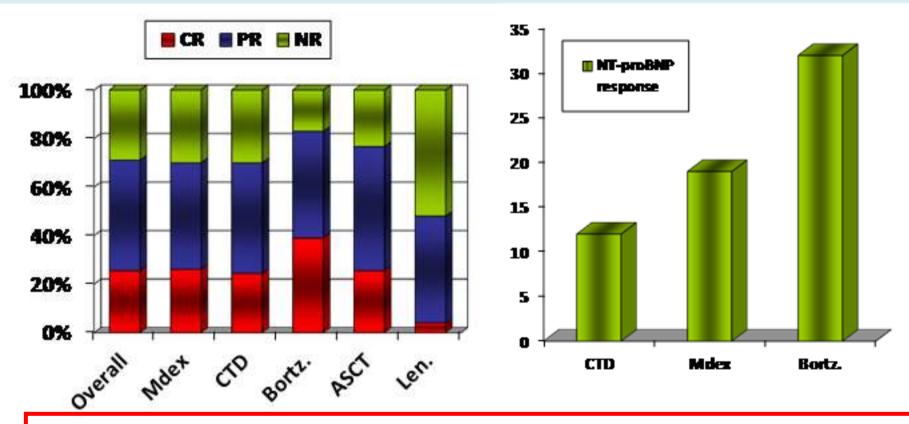
Event-free survival according to treatment group in the landmark analysis


Available treatments for AL amyloidosis (ITT)

Novel agents

	Patient/ prev.tx	HR/CR %	Organ Resp %	TRM% (SAE%)	Author
Thalidomide-Dex	31/31	48/19	26	0 (65)	Palladini 2005
Cycl-Thal-Dex	75/44	74/21	27	4 (32%)	Wechalekar 2007
Lenalidomide±Dex	22/13 34/31	41/NR 47/21	23 21	18 (86) 3 (35)	Dispenzieri 2007 Sanchorawala 2007
Lenalidomide-MDex	26/0	58/23-42 ^{15mg}	50	0 (81)	Moreau 2010
Pomalidomide-Dex	32/32	41/9 ^{VGPR}	H 11, K 17	NR (65)	Dispenzieri 2010 ^{abs}
Bortezomib Bortezomib-Dex	54/54 94/76	67/29 71/25	28 30	0 (50-79) 0 (29)	Reece 2011 Kastritis 2010
Bortezomib-MDex	33/19	84/29	H 14, K 27	NR (60)	Gasparetto 2010 ^{abs}
Cycl-Bortez-Dex	15/7	93/73	K 40	NR	Mikhael 2010 ^{abs}

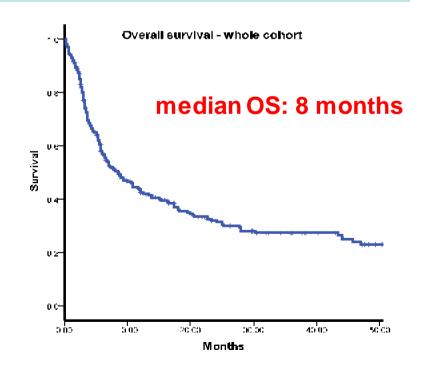
Adjuvant bortezomib and dexamethasone following risk-adapted melphalan and stem cell transplant in systemic light-chain amyloidosis (AL): A phase II study

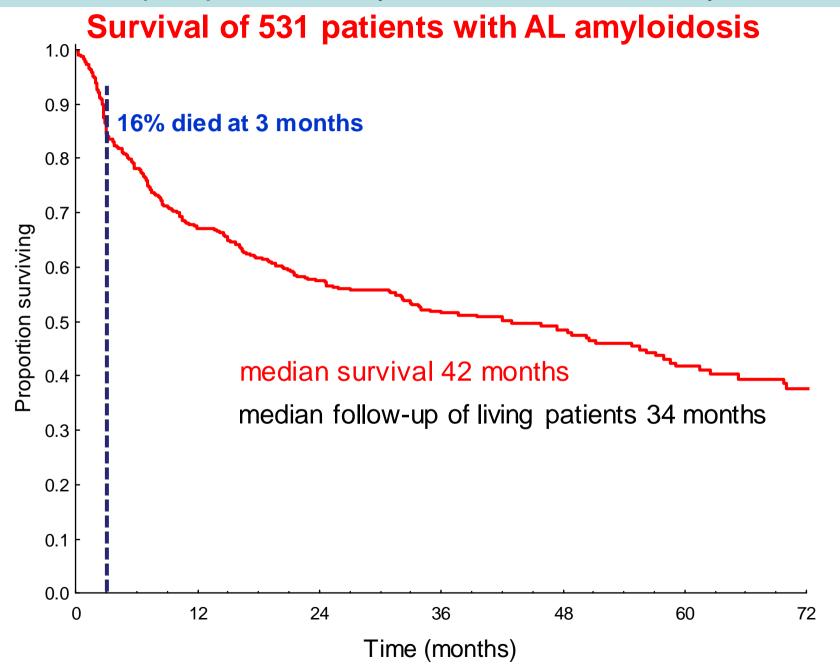

Landau et al, ASH 2010– Abstr. #2391

A European collaborative study of treatment outcomes in 428 patients with systemic AL amyloidosis

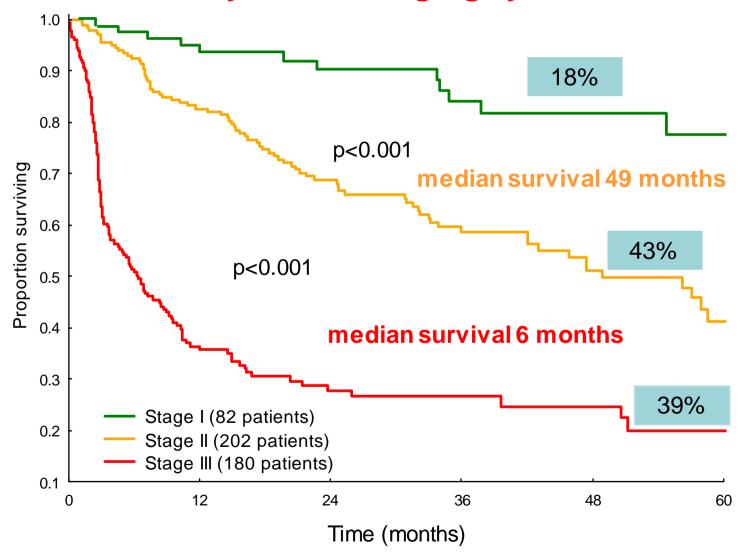
Wechalekar AD, Kastritis E, Merlini G, Hawkins PN, Dimopoulos MA, Gillmore J, Gibbs S, Palladini G.

ASH 2010, Abstr. #988

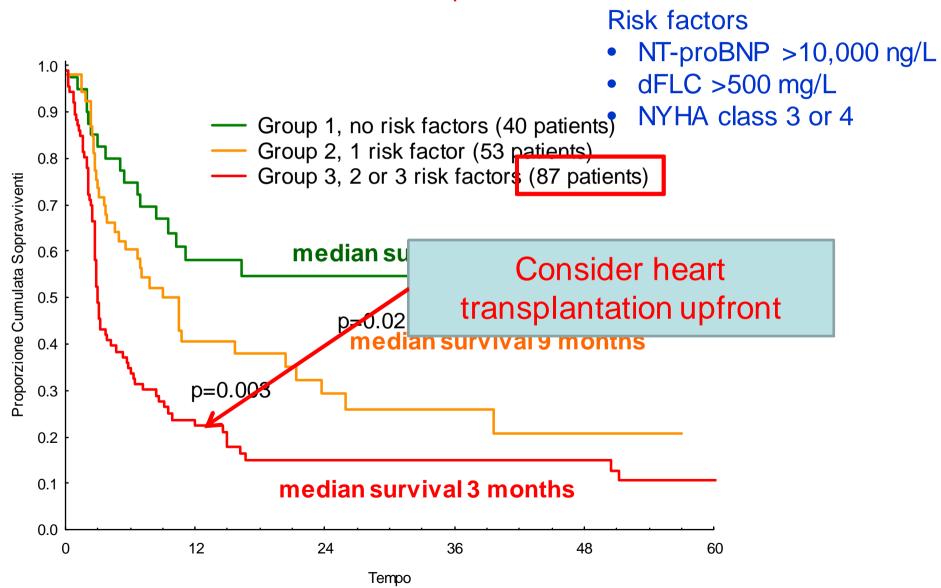

- Bortezomib is associated 80% haematological responses with 50% achieving at least dFLC-VGPR
- It is rapidly acting (hematologic responses in 4-6 weeks)
- Translates in high organ response rates even in advanced risk patients


European collaborative study of 242 patients with systemic AL amyloidosis with Mayo Stage III disease Wechalekar AD, Schoenland S, Kastritis E, Merlini G, Hawkins PN, Dimopoulos MA, Russo P, Lane T, Foli A, Foard D, Milani P, Rannigan L, Hegenbart U, Gillmore JD, Palladini G. 13th IMW Paris, 2011 P-438

ECOG performance status				
≤1	112 (47%)			
2	71 (29%)			
≥3	59 (24%)			
NYHA status				
≤1	41 (17%)			
2	57 (23%)			
≥3	114 (54%)			


37% of patients completed the planned treatment

	dFLC
Response	response
CR/dFLC-VGPR	50 (21%)
PR	34 (14%)
NR	29 (12%)
Response (ITT)	84 (34%)



Survival of 464 patients with AL amyloidosis according to the Mayo Clinic staging system

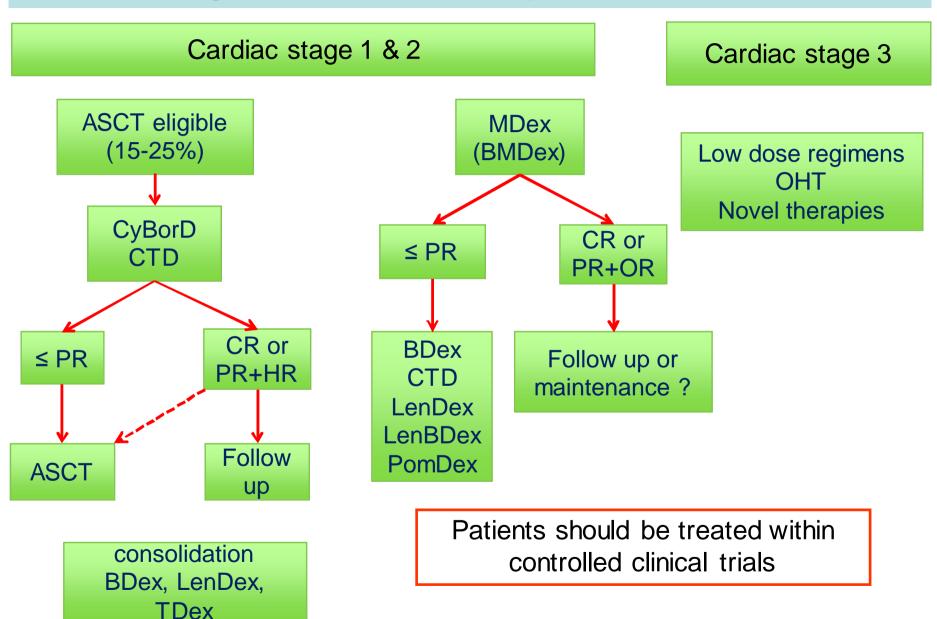
Survival of 180 patients with Mayo Clinic stage III AL amyloidosis according to NYHA class, NT-proBNP and dFLC

Management of AL amyloidosis in 2011

Transplanting the irreversibly damaged organs

Orthotopic heart transplantation (+ASCT)

in selected patients:


- younger
- at high cardiac risk
- without significant extra-cardiac amyloidosis

Best tolerated treatment should start immediately at diagnosis and after OHT while waiting for possible ASCT

Criteria for eligibility remain to be defined International prospective studies needed to establish guidelines

> Dey et al, Transplantation 2010; 90:905-11 Sattianayagam et al, Am J Transplant 2010;10:2124-31 Kristen et al, Eur J Heart Fail 2009; 11:1014-20 Lacy et al, J Heart Lung Transplant 2008; 27:823 Mignot et al. Arch Cardiovasc Dis. 2008;101:523-32.

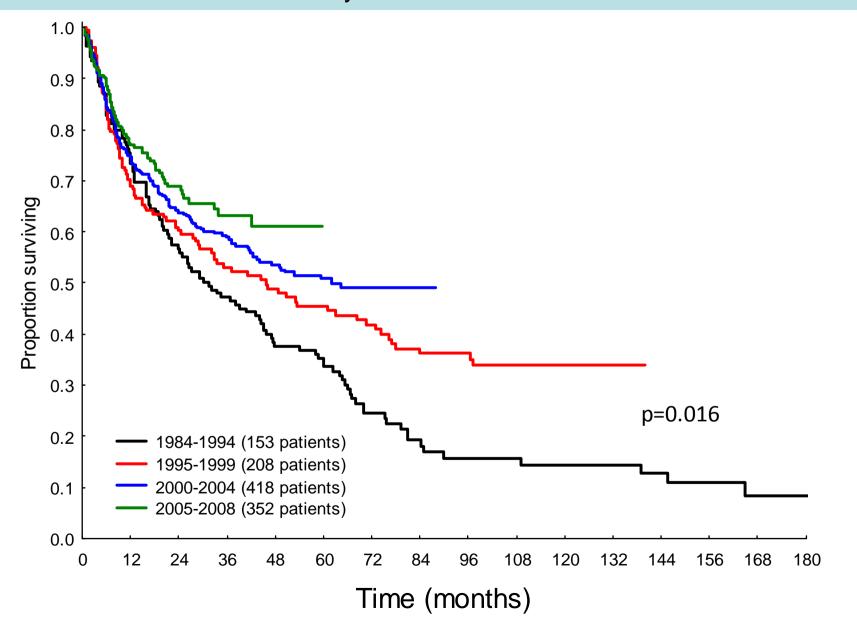
Management of AL amyloidosis in 2011

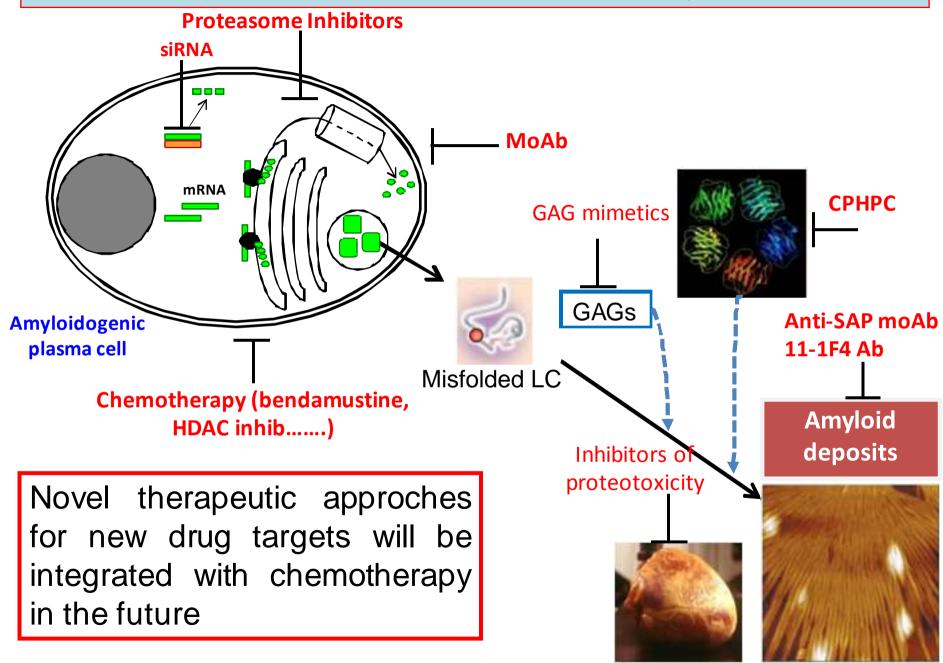
Conclusions

- Early and correct diagnosis is vital
- Use cardiac biomarkers for risk assessment
- Prompt therapy and frequent monitoring with FLC and cardiac biomarkers
- Novel therapeutic approaches needed for patients with advanced cardiac involvement
- Phase III trials necessary to define optimal therapy: international collaboration needed

AL amyloidosis is a rare disease. In order to make progress national and international collaborations are needed

Italian Amyloidosis Network


A common diagnostic and therapeutic protocol is periodically discussed and updated: in Brescia on April 2, 2011


European Network for Phase III trial comparing MDex vs BortezMDex

Survival of 1131 patients with AL amyloidosis according to the year of diagnosis followed at the Pavia Amyloid Research and Treatment Center

Perspectives in the treatment of AL amyloidosis

University of Pavia and Fondazione IRCCS Policlinico San Matteo Amyloidosis Research and Treatment Center

Vittorio Bellotti Simona Casarini Simona Donadei Andrea Foli Sofia Giorgetti Francesca Lavatelli

Paolo Milani Francesco Musca Vittorio Necchi Mario Nuvolone Laura Obici Giovanni Palladini Margherita Pasotti Vittorio Perfetti Stefano Perlini Paola Rognoni Paola Russo Francesco Salinaro Gabriele Sarais Monica Stoppini Veronica Valentini Laura Verga

