

"microRNAs in Myeloma"

Carlo M. Croce, M.D.

The Ohio State University Comprehensive Cancer Center The John W. Wolfe Chair in Human Cancer Genetics Director, Institute of Genetics Director, Human Cancer Genetics Program

Occurrence of the most frequent and recurrent chromosomal abnormalities in human CLL

-LETTERSTONATURE-

Localization of gene for human p53 tumour antigen to band 17p13

M. Isobe*, B. S. Emanuel[†], D. Givol[‡], M. Oren[‡] & C. M. Croce^{*}

* Wistar Institute, 3601 Spruce Street and † Departments of Pediatrics and Human Genetics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA ‡ Department of Chemical Immunology, Rehovot 76100, Israel

Recently the gene for the cellular tumour antigen p53, a phosphoprotein found in increased concentration in a variety of human cells¹, has been mapped to region 17q22 by *in situ* hybridization techniques and has been shown to translocate to the chromosome carrying the translocation [t(15;17)] associated with acute promyelocytic leukaemia (APL)². Based on this finding it has been postulated that this gene has a role in the pathogenesis of APL². Here we present evidence that the gene for p53 is not located on the long arm of chromosome 17, but maps to band 17p13. We therefore suggest that this gene is not directly involved in the chromosome translocation observed in APL.

The 24 human chromosomes are shown, with stars indicating the locations of microRNA-gene-containing regions that are implicated in cancer lone star = one microRNA genel. Many microRNAs map to chromosome regions that are involved in nearrangements in human cancer. For example, miR-15-a and miR-16-1 map to 13q14, a region that is frequently deleted in chromic lymphocytic leukaemia, miR-29a and miR-29b map to 7q32, a region that is deleted in myelodysplastic syndrome and acute myeloid leukaemia. The let-7g-iet-7a1 cluster maps to 3p2, the let-7f-1-let-7d cluster maps to 9q22.3, let-7a-2 maps to 11q23-q24 and let-7c maps to 21q21 — all of these regions are involved in deleted in deleted in deleted in deleted in deleted in the stars.

Proc. Natl. Acad. Sci. USA Vol. 86, pp. 8867-8871, November 1989 Genetics

Activation of *MYC* in a masked t(8;17) translocation results in an aggressive B-cell leukemia

(BCL3 gene/oncogene activation/tumor progression)

C. E. GAUWERKY*, K. HUEBNER*, M. ISOBE*, P. C. NOWELL[†], AND C. M. CROCE*

*The Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, 3420 North Broad Street, Philadelphia, PA 19140: and [†]Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104

Contributed by P. C. Nowell, July 24, 1989

ABSTRACT We have analyzed the oncogene rearrangements involving BCL2 and MYC in the leukemia cells of a patient with an aggressive prolymphocytic leukemia that had an abnormal karyotype including a t(14:18) translocation and a chromosome 17q+. Molecular analysis showed that BCL2 was rearranged in the major breakpoint cluster region and had joined into the immunoglobulin heavy chain gene as in follicular lymphoma. Cloning and sequence analysis of the rearranged MYC gene revealed that MYC was truncated at the Pvu II site at the end of the first exon of MYC and had joined into the regulatory elements of a gene that we called BCL3 (B-cell leukemia/lymphoma 3). The BCL3 locus was mapped to chromosome 17 band q22. We found BCL3 transcribed as a message of 1.7 kilobases in many hematopoletic cell lines representing all hematopoietic lineages. In the patient's leukemia cells, the truncated MYC gene was highly expressed under the influence of BCL3 regulatory elements, leading to an aggressive B-cell leukemia that presumably had been derived from an indolent lymphoma carrying a rearranged BCL2 gene.

Characteristic	Value
Male sex – no. of patients (%)	58 (61.7)
Age at diagnosis – yrs.	
median	57.3
range	38-78
Therapy begun	
No	
No. of patients	53
Time since diagnosis – mo.	87
Yes	
No. of patients	41
Time between diagnosis and therapy – mo.	40
ZAP-70 level	
≤ 20%	48
>20%	46
IgV _H	
Unmutated (≥98% homology)	57
Mutated (<98% homology)	37

Characteristics of patients analyzed with the miRNACHIP.

Nr. Crt.	Component	Мар	P value	Group 4 expression**	Putative targets ***	Observation****
1	miR-15a	13q14.3	0,018	high	NA	cluster 15a/16-1 del CLL & Prostate ca. (ref (10)
2	miR-195	17p13	0,017	high	NA	del HCC
3	miR-221	Xp11.3	0,010	high	HECTD2, CDKN1B, NOVA1, ZFPM2, PHF2	cluster 221/222
4	miR-23b	9q22.1	0,009	high	FNBP1L, WTAP, PDE4B, SATB1, SEMA6D	cluster 24-1/23b FRA 9D; del Urothelial ca. (ref (13)
5	miR-155	21q21	0,009	high	ZNF537, PICALM, RREB1, BDNF, QKI	amp child Burkitt's lymphoma (ref (16)
6	miR-223	Xq12-13.3	0,007	low	PTBP2, SYNCRIP, WTAP, FBXW7, QKI	normally expression restricted to myeloid lineage (ref (27)
7	miR-29a-2	7q32	0,004	low	NA	cluster 29a-2/29b-1 FRA7H; del Prostate ca. (ref (13)
8	miR-24-1	9q22.1	0,003	high	TOP1, FLJ45187, RSBN1L, RAP2C, PRPF4B	cluster 24-1/23b FRA 9D; del Urothelial ca. (ref (13)
9	miR-29b-2 (miR- 102)	1q32.2- 32.3	0,0007	low	NA	
10	miR-146	5q34	0,0007	high	NOVA1, NFE2L1, C1orf16, ABL2, ZFYVE1	
11	miR-16-1	13q14.3	0,0004	high	BCL2, CNOT6L, USP15, PAFAH1B1, ESRRG	cluster 15a/16-1 del CLL, prostate ca. (ref (10)
12	miR-16-2	3q26.1	0,0003	high	see miR-16-1	identical miR-16-1
13	miR-29c	1q32.2- 32.3	0,0002	low	NA	

miRNA signature associated with prognostic factors (ZAP70 and IgVH mutations) and disease progression in CLL patients*.

Note: * - All the members of the signature are mature miRNAs;

- *** top five predictions using TargetScan at <u>http://genes.mit.edu/targetscan</u> (32) were included. NA not available; for specific gene names see the NCBI site at http://www.ncbi.nlm.nih.gov/entrez.
- **** FRA = fragile site; del = deletion; HCC = hepatocellular carcinoma; ca. = carcinoma.

Genetic variations in the genomic sequences of miRNAs in CLL patients *.								
miRNA	Location **	CLL	Normals	miRNACHIP expression	Observation			
miR-16-1	Germline pri-miRNA (CtoT)+7bp in 3'	2/75	0/160	Reduced to 15% and 40% of normal, respectively	Normal allele deleted in CLL cells in both patients (FISH, LOH); For one patient: Previous breast cancer; Mother died with CLL; sister died with breast ca;			
miR-27b	Germline pri-miRNA (GtoA)+50bp in 3'	1/75	0/160	Normal	Mother throat and lung cancer at 58. Father lung cancer at 57.			
miR-29b-2	pri-miRNA (GtoT)+212 in 3'	1/75	0/160	Reduced to 75%	Sister breast cancer at 88 (still living). Brother "some type of blood cancer" at 70.			
miR-29b-2	pri-miRNAs ins (+A)+107 in 3'	3/75	0/160	Reduced to 80%	For two patients: Fam history of unspecified cancer			
miR-187	pri-miRNA (TtoC)+73 in 3'	1/75	0/160	NA	Unknown			
miR-206	pre-miRNA 49(GtoT)	2/75	0/160	Reduced to 25%	Prostate cancer; mother esophogeal cancer. Brother prostate cancer sister breast cancer			
mi R-206	Somatic pri-miRNA (AtoT)- 116 in 5'	1/75	0/160	Reduced to 25% (data only for one pt)	Aunt some type of leukemia (dead)			
miR-29c	pri-miRNA (GtoA)31 in 5'	2/75	1/160	NA	Paternal grandmother CLL; sister breast ca. (one pt).			
miR-122a	pre-miRNA 53(CtoT)	1/75	2/160	Reduced to 33%	Paternal uncle colon cancer.			
miR-187	pre-miRNA 34(GtoA)	1/75	1/160	NA	Grand father polycythemia vera. Father a history of cancer but not lymphoma.			

Note: * - For each patient/normal control more than 12kb of genomic DNAs was sequenced and, in total, we screened by direct sequencing ~627kb of tumor DNA and about 700kb of normal DNA. The position of the mutations are reported in respect with the precursor miRNA molecule. The list of 42 microRNAs analyzed includes 15 members of the specific signature or members of the same clusters, *miR-15a, miR-16-1, miR-23a, miR-23b, miR-24-1, miR-24-2, miR-27a, miR-27b, miR-29b-2, miR-29c, miR-146, miR-155, miR-221, miR-222, miR-223* and 27 other microRNAs (randomly selected): *let-7a2, let-7b, miR-17-3p, miR-17-5p, miR-18, miR-19b-1, miR-20, miR-21, miR-30b, miR-30c-1, miR-30d, miR-30e, miR-32, miR-100, miR-105-1, miR-108, miR-122, miR-125b-1, miR-142-5p, miR-142-3p, miR-193, miR-181a, miR-187, miR-206, miR-224, miR-346.*

** - When normal correspondent DNA from bucal mucosa was available, the alteration was identified as germline when present or somatic when absent, respectively. FISH =fluorescence *in situ* hybridization; LOH = loss of heterozygosity; NA = not available

Bcl2 protein expression is inversely correlated with *miR-15a* and *miR-16-1* miRNAs expression in CLL patients. (*A*) The unique site of complementarity miR::mRNA is conserved in human and mouse and is the same for all four human m protein are inversely correlated with *miR-15a* and *miR-16-1* expression. Five different CLL cases are presented, and the normal cells were pools of CD5⁺ B lymphocytes. The T cell leukemia Jurkat was used as control for Bcl2 protein expression. For normalization we used β -actin. The numbers represent normalized expression on miRNACHIP. ND, not determined. (*C*) The inverse correlation in the full set of 26 samples of CLL between miR-15a / miR-16-1 and Bcl2 protein expressions. The normalized Bcl2 expression is on abscissa vs. *miR-15a* (*Left*) and *miR-16-1* (*Right*) levels by miRNA chip on ordinates. ACT, β -actin.

ł

8.4

9.2

.

mR15a S+16-1 S

miR15a A+16-1 A

1.4 1.2 #pGL3-Cent SR-GFP+3'UTR 8.0 8 pSR-15a/16-1 S+3'UTR SR-15a/16-1 A+3'UTR 2 0.0 90 0.4 EpSR-15a/16-1 S+3'M1 IIIpSR-15a/16-1 5+3'M2 6,3 0

(Fabbri and Botoni et al, JAMA,)

MicroRNA	Dysregulation	Function	Validated	Oncogene	Refs
			targets	suppressor (TS)	
miR-15α and miR-16-1	Loss in CLL, prostate cancer and multiple myeloma	Induces apoptosis and inhibits tumorigenesis	BCL2, WT1 RAB9B and MAGE83	TS	15,20,23, 30,52,69
let-7 (a, b, c, d, e, f, g and i)	Loss in lung and breast cancer and in various solid and haematopoietic malignancies	Induces apoptosis and inhibits tumorigenesis	RAS, MYC and HMGA2	TS	22,26, 42,70
miR-29 (a, b and c)	Loss in aggressive CLL, AML (11q23), MDS lung and breast cancers and cholangocarcinoma	Induces apoptosis and inhibits tumorigenicity. Reactivates silenced tumour suppressor genes	TCL1, MCL1 and DNMTs	TS	30,64, 71,72
miR-34	Loss in pancreatic, colon, breast and liver cancers	Induces apoptosis	CDK4, CDK6, cyclin E2, EZF3 and MET	TS	56-58
miR-145	Loss in breast cancer	Inhibits proliferation and induces apoptosis of breast cancer cells	ERG	TS	31
miR-221 and miR-222	Loss in erythroblastic leukaemia	Inhibits proliferation in erythroblasts	KIT	TS	30
miR-221 and miR-222	Overexpression in aggressive CLL, thyroid carcinoma and hepatocellular carcinoma	Promotes cell proliferation and inhibits apoptosis in various solid malignancies	p27, p57, PTEN and TIMP3	ONC	43,51,73
miR-155	Upregulated in aggressive CLL, Burkitt's lymphoma and lung, breast and colon cancers	Induces cell proliferation and leukaemia or lymphoma in mice	MAF and SHIP1	ONC	32-34, 36,37
miR-1792 cluster	Upregulated in lymphomas and in breast, lung, colon, stomach and pancreatic cancers	Induces proliferation	E2F1, BIM and PTEN	ONC	19,34,35, 40,41
miR-21	Upregulated in glioblastomas, AML (11q23), aggressive CLL and breast, colon, pancreatic, lung, prostate, liver and stomach cancers	Inhibits apoptosis and increases tumorigenicity	PTEN, PDCD4, TPM1 and TIMP3	ONC	31,37-39, 44-50
miR-372 and miR-373	Upregulated in testicular tumours	Promotes tumorigenicity in cooperation with RAS	LATSZ	ONC	74

AML, acute myeloid leukaemia: BCL2, 8 cell leukaemia/lymphoma 2; BIM, Bcl2-interacting mediator of cell death; CLL, chronic lymphocytic leukaemia; DNMT, DNA methyltransferase: HMGA2, high mobility group AT-hook 2; LATS2, large tumour suppressor homologue 2; MCL1, myeloid cell leukaemia sequence 1; MDS, myelodysplastic syndrome; PDCD4, programmed cell death 4; PTEN, phosphatase and tensin homologue; 5HIP1, SH2 domain-containing inositol-5'-phosphatase 1; TCL1, T cell lymphoma breakpoint 1; TIMP3, tissue inhibitor of metalloproteinases 3; TPM1, tropomyosin 1; WT1, Wilms tumour 1.

Group	Protein	Gene description	Z-Score	Comments
Cell growth & cell cycle	Ruvbl1	RuvB-like 1; TATA binding protein interacting protein 49 KDa	2.01	-
	Sugt1	Suppressor of G2 allele of SKP1	2.43	_
	Cdc2	Cell division cycle 2, G1 to S and G2 to M	2.43	_
	Psf1	GINS complex subunit 1 (Psf1 homolog)	2.43	_
Antiapoptotic	Grp78	Heat shock 70-kDa protein 5 (glucose-related protein, 78 kDa)	2.43	-
	Bcl2	B-cell CLL/lymphoma 2	2.43	Predicted and validated target of miR-15a/16 (22)
	Pdia2	Protein disulfide isomerase family A, member 2	2.43	_
Oncogenesis	Wt1	Wilms tumor 1	2.43	Predicted target of miR-15a/16; Validated qRT-PCR in MEG-01
	MageB3	Melanoma antigen family B, 3	2.43	_
	Rab9B	RAB9B member RAS oncogene family	2.16	Predicted target of miR-15a/16
Others	Cdh26	Cadherin-like 26	2.43	_
	Crhbp	Corticotropin releasing hormone-binding protein	2.43	Predicted target of miR-16
	Actr1A	ARP1 actin-related protein 1 homolog A, centractin alpha	2.43	Predicted target of miR-15a/16
	Cshl1	Chorionic somatomammotropin hormone-like 1 precursor	2.43	Predicted target of miR-16
	Hla-B	Major histocompatibility complex, class I, B	2.43	_
	Tpi1	Triosephosphate isomerase 1	2.43	Predicted target of miR-15a/16
	Hsp90AB1	Heat shock protein 90-kD protein 1, ß	2.43	_
	Cfl2	Cofilin 2	1.72	Predicted target of miR-16
	AldoA	Aldolase A, fructose-bisphosphate	2.43	_

Examples of proteins down-regulated by the *miR-15a/16-1* cluster identified by proteomics in MEG-01 cells

Examples of the CLL signature of *miR-15a/16-1* down-regulated genes by microarray

			P		
Gene symbol	Map	Gene name	CLL	MEG-01	
HSDL2	.9q32	Hydroxysteroid dehydrogenase like 2	0.00178	0.00254	
5LC35A1	6q15	Solute carrier family 35 (CMP-sialic acid transporter), member A1	0.00178	0.00341	
ECHDC1	6q22.33	Enoyl coenzyme A hydratase domain containing 1	0.00323	0.00582	
CARDS	19q13.32	Caspase recruitment domain family, member 8	0.00446	0.00078	
OMAT	1p32.2-p32.1	OMA1 homolog, zinc metallopeptidase (5. cerevisiae)	0.00446	0.0158	
UGP2	2p14-p13	UDP-glucose pyrophosphorylase 2	0.00446	0.000629	
CREBL2	12p13	cAMP responsive element binding protein-like 2	0.00457	0.0199	
Cep63	3q22.1	Centrosome protein Cep63	0.0049	0.0137	
PNN	14q21.1	Pinin, desmosome-associated protein	0.0049	0.00359	
TRA1	12q24.2-q24.3	Tumor rejection antigen (gp96) 1	0.00496	0.0211	
SLC3583	6p24.3	Solute carrier family 35, member B3	0.00601	0.0208	
RHOT1	17q11.2	Ras homolog gene family, member T1	0.00695	0.0197	
LARS	5q32	Leucyl-tRNA synthetase	0.00696	0.00239	
RADSIC	17q22-q23	RAD51 homolog C (S. cerevisiae)	0.0075	0.00334	
WASPIP	2q31.1	Wiskott-Aldrich syndrome protein interacting protein	0.00783	0.0108	
MCLT	1q21	Myeloid cell leukemia sequence 1 (BCL2-related)	0.00863	0.011	
ASXL2	2p24.1	Additional sex combs like 2 (Drosophila)	0.00875	0.000503	
ARFIP1	4q31.3	ADP-ribosylation factor interacting protein 1 (arfaptin 1)	0.0114	0.0108	
HERC6	4q22.1	Hect domain and RLD 6	0.0116	0.00107	
TIAT	2p13	TIA1 cytotoxic granule-associated RNA-binding protein	0.0116	0.0116	
VP545A	1q21-q22	Vacuolar protein sorting 45a (yeast)	0.0117	0.000788	
HLC-8	17g25.1	Lung cancer-related protein 8	0.0124	0.0164	
HACEI	6q21	HECT domain and ankyrin repeat containing, E3 ubiquitin protein ligase 1	0.0125	0.0115	
ARV1	1q42.2	ARV1 homolog (yeast)	0.0156	0.000825	
NT5C2L1	6q22.1	5' nucleotidase, cytosolic II-like 1	0.0172	0.0139	
PDCD6/P	3023	Programmed cell death 6 interacting protein	0.0214	0.00276	
GTF2H1	11p15.1-p14	General transcription factor IIH, polypeptide 1, 62 kda	0.0217	0.00125	
MSH2	2p22-p21	mutS homolog 2, colon cancer, nonpolyposis type 1 (E. coli)	0.0242	0.00192	
JUN .	1p32-p31	v-jun sarcoma virus 17 oncogene homolog (avian)	0.0281	0.00059	
ALDH6A1	14q24.3	Aldehyde dehydrogenase 6 family, member A1	0.0297	0.00798	
SCAP2	7p21-p15	Src family-associated phosphoprotein 2	0.0298	0.0108	

MiR15a/16-1 cluster inhibits the growth of MEG-01 tumor engraftments in nude mice. (*A*) Growth curve of engrafted tumors in nude mice injected with MEG-01 cells pretransfected with pRS-E or pRS15/16 or mock transfected. (*B*) Comparison of tumor engraftment sizes of mock-, pRS-E-, and pRS15/16-transfected MEG-01 cells 28 days after injection in nude mice. (*C*) Tumor weights SD in nude mice.

Clustering analysis of 540 samples representing 6 solid cancers and the respective normal tissues. MiRNAs were included in the tree when their expression level (background-subtracted intensity) was higher than the threshold value (256) in at least 50% of the samples. One hundred thirty seven microRNAs were retained for clustering. Arrays were median-centered and normalized by using Gene Cluster 2.0. Average linkage clustering was performed by using uncentered correlation metric.

<u>Table 7. miR</u> Cancer	NAs used to class Up- regulated miRs	sify human cance Down- regulated miRs	ers and normal tissues Misclassification error after 10-fold cross validation
Breast	15	12	0.08
Colon	21	1	0.09
Lung	35	3	0.31
Pancreas	55	2	0.02
Prostate	39	6	0.11
Stomach	22	6	0.19

Median normalization was performed, and the method of the nearest shrunken centroids was used to select predictive miRNAs (28).

solid cancers	8	
miR	N	Tumor type
miR-21	6	Breast, colon, lung, pancreas, prostate, stomach
miR-17-5p	5	Breast, colon, lung, pancreas, prostate
miR-191	5	Colon, lung, pancreas, prostate, stomach
miR-29b-2	4	Breast, colon, pancreas, prostate
miR-223	4	Colon, pancreas, prostate, stomach
miR-128b	3	Colon, lung, pancreas
miR-199a-1	3	Lung, pancreas, prostate
miR-24-1	3	Colon, pancreas, stomach
miR-24-2	3	Colon, pancreas, stomach
miR-146	3	Breast, pancreas, prostate
miR-155	3	Breast, colon, lung
miR-181b-1	3	Breast, pancreas, prostate
miR-20a	3	Colon, pancreas, prostate
miR-107	3	Colon, pancreas, stomach
miR-32	3	Colon, pancreas, prostate
miR-92-2	3	Pancreas, prostate, stomach
miR-214	3	Pancreas, prostate, stomach
miR-30c	3	Colon, pancreas, prostate
miR-25	3	Pancreas, prostate, stomach
miR-221	3	Colon, pancreas, stomach
miR-106a	3	Colon, pancreas, prostate

The list includes 21 commonly up-regulated microRNAs in 3 or more (N) types of solid cancers (P value = 2.5×10^{-3}).

Figure 2. miR-194-2-192 Cluster Is Induced Following p53 Activation

Figure 3. miR-192-194-215 Induce Decrease of Proliferation and Cell-Cycle Arrest in WT 7PS3 MM Cells

Figure 4. miRNA-102-194 and 215 Target MDM2 at the mRNA and Protein Levels in MM Cells

Figure 5. miB-192, 194, and 215 Increase Sensitivity to MI-219 in Vitro and in Vivo by Targeting MDM2

Figure 6. miR-192-215 Regulate IGF-1 and IGF1-R Expression in MM Cells

Modulation of mismatch repair and genomic stability by miR-155

Nicola Valen^{46,5}, Pierluigi Gasparini⁴⁷, Muller Fabbri^{46,5}, Chiara Braconi⁴, Angelo Veronese⁴, Francesca Lovat⁴, Brett Adais⁴, Ivan Vannin², Francesca Tanin², Arianna Botton², Stefan Costine an², Sukhinder K. Sandha⁴, Gerard J Nuovo⁴, Hansjuerg Akler⁴, Roberta Gafa⁴, Federica Calore⁴, Manunia Persoin⁴, Giovanni Lanza⁴, Stefano Volinia¹⁴, Massimo Negrin³, Michael A. McBlutton⁴, Dio Amadon⁴, Bichard Tinhel^{4,6,4}, and Carlo M. Croce^{4,5,4}

Contributed by Gate M. Crock, Fahrcary 2E. 2010 Isent for review Relevany 3, 20102

inactivation of mismatch regain (MMR) is the cause of the common sancer predisposition disorder Lynch syndrome (55), also known as hereditary surpolypials colorectal sprice DIMPCCL as well as 10-\$3% of sporadic colorectal, endometrial, ovarian, gartric, and ovotheilal cancers. Elevated mutation rates (mutator phanotype). including simple repeat instability (MSI) are a signature of MMII detects. MicrolitiAs (salts) have been impleated in the costori of critical relater pathwave incohood in development and cancer. Here we show that overexpression of miR-155 significantly down-regulates the core MMR proteins, MMSH2, MMSH8, and MMLH1, inducing a mulator phenotype and MS. An inverse constation between the expression of miR-155 and the expression of MLH1 or MSH2 proteins was found in human colorectal cancer. Finally, a number of Mill turnors with unknown cause of MMII inactivation displayed mill-155 overespression. These data provide support for mill-155 modulation of MMM as a mechanism of cancer pathogenesis.

(otometal tannar | DNA mpair | escruthal

0

Minterportation arrays, recombination between heteroadlelic parental doorsonomes, or chemical and physical damage to the DNA (1). MutS homology (MSH) and MutL homology (MLH) PMS) are highly conserved proteon that are exertial for the minimatch repair (MMR) encloses reaction (2). In human cells, MSH2 and MILH1 are the fandamental components of MMR. The MMSH2 protein forms a heterodimer with MMSH3 or MMSH6 and is required for mismatchilenion recognition, whereas the hMLHI protein forms a heterodaner with hMLHU or hPMS2 and forms a tennary complex with MSH betenadiment to complete the excloien repair reaction (2, 3). Human cells contain at loss 10-fold more of the 3M5H2-IMSH6/MILIE-6PMS2 complex, which separa single maclootide and small imprior-deletion loop (IDL) mismatches, compared with the IrMSHC-AM64U/AMLHU-bAMLHU complex, which primarily repairs large IDL minimatches (4-6). In addition to MMR, the hMSH2-hMSH6-hMLH1-hPMS2 armpoterms have been uniquely shown to recognize lesions in DNA and to signal cell cycle sensit and apoptosis (7,8).

Matarians in the bMSH2, bMSH6, MMLHI, and hPHE2 over MMR genes have been linked in Lruch syndrome (US), also known in hereditary mospolypoin colorectal cancer (UDPCC) (9). These observations have provided considerable support for the mustator bipothesis, because defects in the MSH and MLH/ PMS genes significantly increase calibriar matarion rates, which these may drive the doubletion of manarcoin oncogene and tumorsuppressor gene matariom knowl in cancers (10). The most abusen significantly increase phenotype in instability of simple import sequences or microantellits DNA [ie, microantilite instability (MSD)] (11, 12). Virtually all LSHDPCC superve dis-

play MSI resulting from matrices are inherited appgrouts: inactivation of the core MMR genus (13-15). Most of the 10-49% of sporadic: CRC, endownitid, creating, garces, and unorthelial tansors that display MSI are a tenalt of acquired *iMLIII* promoler methylation (16). Approximately 9% of MSI tansors can be accounted for, at least partially, by mutation and/or epigenetic inactivation of the core MMR components (14). The tenaising 5%, as well as a significant proportion of the bialdelic MMR mathematican mechanism. tenain proportion of the bialdelic MMR inactivation mechanism.

MicroB24Ae (miRe) are encoding RNAe that play a cole in the posttranscriptional regulation of >30% of the human genes controlling critical biological processes, including development, cell differentiation, apoptosis, and proliferation (17, 18). Overexpression of mR-155 has been observed in CBC (19-21), and appears to be more frequent in MSI than MSS CBCs (22). These data are consistent with the hypothesis that miR-155 might regulate components of the MMR machinery and, corresponding, rates of matation and MSI.

Results.

AMENT, MISSIZ, and MISINE Are Targets of mill 155. We used in tillion prediction models to identify potential hinding sites for miR-155 in the mRNA of the core MMR genes (2), 24). Two parative sites were found in RMLH3 using RNAbshrid (BIRBerv, NCBI NM 000249.21, one in the 3'-UTR and the other in the coding sequence (CDS) (NCIII NM 000249.2). One site was found in the N-LTER of AMSH2 using TargetScan (Whitehead Institute, MIT: NCBI NM 000251.13, and one site was found in the CDS of AMSH6 using RNAbshrid (Bill/Scer; NCHI NM_000079.2) (Fig. 1.4 and Fig. 51). As a functional screen, we subclosed the coding and 3-regime including the predicted mill-155 seed regions of MLH1, MSH2, or MSH6 downstream of the hardenise gene and recorded hufferase protein activity (25). We used MMR-proficient Colo-320 DM CRC tells for these studies, because they contain a low hand level of miR-355 (26). The Colo-329 DM cells were transfected with the laciforase reporter constructs and with a miR-155 processor (premiR-155) or con-

Authon contributions: NY, P.D., 40: Index (3.2. and C.M.), analysis is measured, NY, P.D., 40: Febboli, A.Y., P.C., NY, P.D., 20, S.Y., C.M. (30), NY, H. (7), NY, M.N., 40: F.S., particular constantly, H.A. contributing trace staggeristic strategies ($N_{\rm eV}$, P.D., 34, J.M. (30), A.M. (31), and C.M.), and and NY, P.S., M. (31), $N_{\rm eV}$, $N_{\rm eV}$,

The authors declare no conflict of intered.

freely available online through the Plant open as an option.

NEV, P.G., and M. Faller contributed equally to this work.

*To advolt contemporalesta may be addressed. I must contain addresses advolt of the admust de-

The white complete suggesting attenuation white at anonymes or physical statistical and a second sec

\$362-4987 | PRAL | April 15, 2010 | and 107 | ins. 15

menu prost.org/1.gc/drie15.1075(prest, 100247.0107

MicroRNA-21 induces resistance to 5-fluorouracil by down-regulating human DNA MutS homolog 2 (hMSH2)

Nicola Valen^{ekt,1}, Pierluigi Gasparini^{n,k,1}, Chiara Bracon^{k,a}, Alessio Paose^{k,b}, Francesca Lovat^{k,b}, Multer Fabbri^{n,k,a}, Khika M. Sumani^{k,b}, Hamjuerg Akler^{k,b}, Dino Amadori^k, Tushar Patel^{k,b}, Gerard J. Nuovo⁷, Richard Fishel^{k,b,b,3}, and Carlo M. Croce^{k,b,b,2}

Begartments at "Molecular Virology, temanology, and Medical Genetics, Testerial Medicing, Yarthology, and "Physics, and "Uke liste University Competencies Genera Contex, Dito State University, Calambac, OH 4271b; Departments of Testerionology and Mocahology and Testerionomia and Diagnosity Medicine, Networky of Persona, 44801 Human, http://www.internet.internet.com/analysis.com/analysis.com/analysis

Results

Contributed by Carlo M. Cross, October 78, 2010 (sent for review September 22, 2010)

The overexpression of microRNA-21 (miR-21) is linked to a number of human tumors including colorectal cancer, where it appears to regulate the expression of turnor suppressor genes including p21. phosphatase and tensin homolog, TGFJ receptor R, and 8-cell leakemia/lymphona 2 associated X protein. Here we demonstrate that mill-21 targets and down-regulates the core mismatch repair (MWII) recognition protein complex, human mut5 homolog 2 (hMSH2) and 6 (hMSH6). Colorectal tomors that express a high level of mill 21 display reduced MMSH2 protein expression. Calls that overproduce mill-21 exhibit significantly reduced 5-fluoroursell (5-FU)-induced G2/M damage ament and apoptosis that is characteristic of defects in the core MMII component. Moreover, senograft studies demonstrate that mill-21 overexpression dramatically reduces the therapeutic efficacy of 5-PU. These studies suggest that the downregulation of the MMR mutator gene associated with miR-21 overexpression may be an important clinical indicator of thempeutic efficacy in colonectal sancer.

colors canver | non-coding WA3 2044 report

Colorectal concer (CRC) is one of the most frequently eccases and about 50,000 deaths expected to occur in 2009 (1), 5-flaceneorated (5-FU)-based characterization (1), 5-flaceneorated (5-FU)-based characterization (1), 6-flaceneorated (5-FU)-based characterization (1), 8-ming (2), However, primary or acquired resistance to pyromdise analog treatments in a common problem in the management of CRC patients (2). These observations highlight the used for a better subcreating of resistance mechanisms and more effective throughes.

MicroRNAe are a class of small, noncoding RNAs that act as postnamecriptional signalaters of gene experision and cell homecotians (3). Onorexpression of mR-21 is a common trait of many setki and horautological malignancies (4), mill-21 overexpression has been loand in blood and stool samples from patients affected by CRC (3, 6). Morecover, mR-21 overexpression is associated with poer benefit from 5-FU adjuviant chemotherapy in stags-II and -EII CRC (7).

The minimized repair (MMR) system is involved in DNA damsage recognitions and repair. Human markin basesting 2 (MMSH2) and human mult, bosonoing 1 (MRDH2) function as core MMR proteins and form heterodiment with protein-humokage (MSH2)-or 5/MSH5 and 1/MLH3 or hPMS2, respectively (9). Heterodimer formation is fundamental for the DNA damaga recognition and represents a cracial step for the stability of the MMR promise humokage (9). Defects in MMR proteins hum-bern associated with reduced triabient benefits from 5-FU adjacent chementherapy in clinical triab. (10). MMR impairment appears to cause reduced incorporation of 5-FU metabolities into DNA, loading to reduced G2/M arrent and appearson after 5-FU treatment (11, 12). mill-21 Directly Targets MMSR2 and MMSR6 Protein Expression. In sillor analysis suggested that miR-21 might target AMSH2 [National Center for Biotechanlogy Information (NCBI) NM 600249.2 and AMSHIS (NCBI NM 600179.2) mRNA (Target-Scan, Whitehead Institute, MIT; Fig. 14) (15). We identified putative binding sites for mill-21 in both the AMSD2 and the AM5H6 3' UTR. We examined the effect of mIR-21 expression on endogenous hMSH2 and hMSH6 mRNA expression in CRC Colo-3200M and SW620 cells. Both cell lines display low basal miR-21 expression. We transforted these cell lines with miR-21 precursor or a scrambled miR precursor control (Fig. ST). Overexpression of an siRNA specific to AMO/2 (anti-MSH2) or kHSD6 (anti-MSER) did not affect the levels of miR-21 (Fig. 5143. The mRNA levels of AMNH2 and AMNH6 were unaffected by overexpression of miR-21 (Fig. 10). In contrast, anti-MSH2 and anti-MSHh siRNA specifically reduced the expression of AMSH2 and AMSH6 mRNA, sequentively (Fig. 18). We note a consistent roduction in the expression of AMSH6 mRNA with the anti-MSH2 siRNA. This reduction could be a result of degenerate hybridization of the anti-MSH2 siRNA with the AMSH4 mRNA or of reduced hMS7/6 mRNA stability resulting from the dission/had betrevalianeric protein partner hMSH2. These souths suggest that miR-21 overexpression does not affect the mill/NA levels of hMSH2 or hMSH6.

We examined the protein levels of MSH2 and MSH8 idlowing transfection of miR-21 in Colo-32000M and SWC20 exhibit proteins whet analysis (Fig. 1c and Fig. 510). IMSH2 and IMSH6 proteins were significantly induced is cells in temptroning miR-21 compared with cells overrepressing the scrambled miR. The anti-MSH2 and anti-MSH6 aRNA were transfected with miR-21 distributed science and the cells manifested in these cell times in parallel. We observed that cells manifested with miR-21 displayed a diverse gradient or distributed and MSH8 that appeared comparable to levels in cells transfected with miR-21 distrain high levels of endogramma miR-22 with a loaded matrice acid (LNA) against miR-21 (anti-miR-21) or a scrambled LNA (antimiR control). We found that ordis transfected with ani-miR-21 biolocular metricms in both IMSH2 and IMSH8 protein expressnice control).

Author contributions N.F. A.F. and C.M.C. designed remark, N.Y. F.S., N.F. F.L., K.M.S. and K.M. partnered remarks, N.S. M.F. KA, U.A. TP, N.F. and C.M.C. surplicase trans-temperature/ptic locks, N.Y. and K.A. analyzed data and N.Y. FL, C.K. & J., and C.M.C. works the pages.

The edition delare no conflict of interest.

Freely available in the Wrough the PGAL span access righten.

"N/A and P.S. contributed squally to the scate.

"To share conspondence into be addressed Securit reflection only or contormant - more only.

Na altin conarcigority alterative with a consplex of the graphic is 10 perce 10 004 (10)-00 (appendent)

21010-21100 | Plat5 | December 2, 2010 | Lott 107 | Los 40

www.proc.orgi.gcma16.1070.0076541107

Mutator activity induced by microRNA-155 (miR-155) links inflammation and cancer

Exmerine Till*, Jean-Jacques Michaille**, Dorothee Wernicke*, Hansperg Alder*, Stefan Costinean*, Stefano Volinia*, and Carlo M. Croos**

*Department of Molecular Virology, temperatory and Medical Genetics, The ONL: State University Medical Generator Concernance Concernance and Benderics Medical Concernance Relationships on Relationships of Relationships of Relationships and Relationships of Relationships and Relatio

Contributed by Carlo M. Croca, Falanary 1, 2011 (sold For review January 25, 2011)

2

Infection-driven Inflammation has been implicated in the pathogenesis of ~15-20% of human tumors. Expression of microRNA-155 (mill: 158) is elevated during imple immune response and autainmure disorders as well as in variaus malignencies. However, the molecular mechanisms providing miR-ISS with its oncopenic properties remain unclear. We examined the effects of miR-555 overexpression and protoflammatory environment on the frequency of spontaneous hypoxanithine phosphoriboxyltranshrase (WWT) mutations that can be detected based on the resistance to 6-thioguanine. Both mill-155 overexpression and inflammatory environment increased the frequency of MMET motations and down-regulated WERT OWERT homolog-5, pombel, a kinase that blocks cell-cycle progression. The increased frequency of HPRT mutation was only moderify attributable to defects in mismatch repair machinery. This result suggests that mill 155 enhances the mutation rate by simultaneously targeting different genes that suppress mutations and decreasing the efficiency of DNA safeguard mechanisms by targeting of cell-cycle regulators such as WEEL By simultaneously targeting turnor suppressor genes and inducing a mutator phenotype, miR-155 may allow the selection of gere alterations required for tumor development and progression. Hence, we anticipate that the development of drugs reducing endogenous miR-155 levels might be key in the treatment of inflammation-related sancers.

general stability [UPS] But [protheation] transpost mile

Come is well established that disords and periotent inflammation contributes to case or development (1–5). Interdosdriven inflammation is invested in the pathogenesis of ~15– 20% of human tumors, and tumor-inflaturing leukoytes, such as monocytes/moriphages. Tymphocytes, and neutrophils, are prime registance of cancer inflammation (1–5). Forthermore, even tantors that are not epidemiologically laiked to pathogeneare characterized by the princes of an inflammation component in their indecomments.

MICRORNAL (miR) are a class of doors, noncoding RNAs that are implicated in more aspects of cell biology. MdR-253 is implicated in hemitopolesis, the intote and acquired immune response, and autoinstrate doorders (4-9). A direct link between elevated levels of mill-233 and the formation and development of nation such as leakemias and becast, long, or gaitric cancers has been established recently (4, 5, 9-12). Thus, transprise mice overesponding maW-172 in B calls or hemotopoietic work cells. show enhanced proliferative disorder that results in high-gradihyphoma (13, 14). Being oncogenic and implicated in inflammation, mill-133 is the printuppe of microiRNAs that stand between inflatation and catcinogenesis. However, the multicular mechanisms behind this link remain unditar. Become miR-733 targets transcripts implicated in DNA repair (15), we evaluated the mutator activity of miR-233 and that of the miR-235-linked inflationatory emissionment as a minimized mechanism codeporting inflammation and unner. In this shuly we report that maR-735 and inflammatory situali increase the spontaneous matation rate.

Results

Oversignession of Mill-133 Results in Inhanted Matation Rate, M.R. 155 targets core components of the DNA manualch repair (MMR) mathineyy, among other instator pathways (15), sugenting that clevated levels of miR-155 might enhance the rate of spontaneous matations. To measure the mitiation rate, we took advantage of the hypotantiane phosphoelbowlitunsletune (HPRT) login, which is a well-established method for estimating matation into. The HPRT entries catalons the convenien of guarant into guarante monophosphate and hyperarchite neumenting memorphosphists in the matter solving methods (D), 171. The loss of HPRT function confers testatance to 5-thiognamine (5-TG), because 5-TG becomes cytotenic only after phosphotthreadantion by HPICT. This resistance can be used to identify cells that have acquired matations at the HPRT looks (16, 17). Because the acquired matteriors are throught to owner randomly, the HPRT genc can be used as a reporter gone, and the frequency of matation at the HPRT locus can be used as an estimate of global generate instability. To measure the effects of miR-233 or anaation rate, we first developed stabile closes of \$W\$20 eclorectal idencardinatia cells and MDA-MB-231 breast adencoarcinomia cells expressing mature suff-155 under the control of the Tat-Ov inducible senters. Insubation of SWEDD clones ICA, 22C, and 23A with descenting increased miR-155 expression by 2.94 ± 0.23, 5.58 ± 0.43, and 0.10 ± 0.05-640, supertieth (mean ± 5D) (Fig. 31 and Table 31), Similarly, descended incatment increased mill-135 expression by 12.01 ± 2.34-2642 ± 1.11-, and 32.07 ± 3.27-tolt in MIDA-MIE-231 clonin 9C. 28, and 298, respectively.

The cell genetic-adjusted MPWT matazinen rang, estimated based on a modified version of thermotion analysis (20), intransard with neR-373 Javah in both SWSD1 and MDAAMB-231 cell clones (Fig. 1. A and P). Constant alevated expression of mill-253 the enhanced matazine rate by up to 3.30-bidd in SWS20 clones and up to 3.47-bidd in MDAAMB-231 doese (Table S1). Momorer, BCT105 enhanced automana acts transmitly over expressing wik-133 by (5.57-2-bid-bidd and/er the control of Tor-Or inducible spaces (Fig. 52) showed a 2.83-bidd higher matation rate (Table S1). These results exclude a direct link between maration rate and with 255 by (5.5).

As imported, the basid spontaneous cell provide-adjusted matation rates of SWQ20 and MDAA/08-211 cells was comparable (0.75 ± 0.27 × 10⁻⁷ and 1.28 × 10⁻⁷ matritations per cell, respectively) and way ~440-fold lower than the spontaneous mutation

Action contributions: Child designed requests; 57, 1.106, 500, 914, 56, and 59, performed respects 57, 1.106, and CMIC consistent data, and 57, 1.106, and CMIC months for paper.

The authors defant to certifict of intented.

Party available united from the PART span across splices. Each dependion. Microsofty data from pairs admitted to the Waldeligness deformult information land a block song from the directly search and other second after accesses as a 10 and 10 at

#808-8800 | PLAL | March 22, 2011 | vol. 108 | no. 12

works (missiong) grades/10, 107 (special 1980) 1961/16

	Tumor vs. normal tissues				
miRNAs deregulated (P < 0.001)	Direction	Fold change			
mir-7-2-prec	Up	1.3			
mir-126	Down	0.4			
mir-200b	Up	1.3			
mir-210	Up	3			
mir-219-1	Up	1.6			
mir-21	Up	2.9			
mir-324-5p	Up	1.3			
mir-451	Down	0.5			
mir-486-5p	Down	0.5			
mir-30a	Down	0.6			

Table 1. Top 10 miRNAs deregulated between tumor and normal lung tissue (class comparison analysis)

Table 2. Associations between miRNA expression in tumor and normal tissues and clinical-pathological characteristics of patients

	Tumor tissue				Normal tissue		
Clinical-pathological characteristics	miRNA	Direction	P value	miRNA	Direction	P value	
Histotype (ADC vs. SCC or others)	mir-205	Down	< 0.001				
	mir-21-pre	Up	< 0.001				
Growth rate diameter (≤50% vs. >50%)	mir-518e	Up	< 0.001	mir-30d*	Up	< 0.001	
	mir-144-pre	Up	< 0.001				
Disease-free survival (alive vs. dead or relapse)	mir-429	Down	0.003	mir-34b	Up	0.001	

Fig. 4. miRNA expression analyses in plasma samples collected before the onset and at the time of disease. The signatures of miRNA ratios and their direction in the analyses are listed in the tables. (A) miRNA signature of risk to develop lung cancer and (B) miRNA signature of lung cancer diagnosis. The ROC curves of samples belonging to the validation set are shown. (C) Kaplan–Meier survival curves of patients with miRNA signatures of risk of aggressive disease (RAD) in plasma samples collected 1–2 y before CT-detection of lung cancer. (D) Kaplan–Meier survival curves of patients with miRNA signatures of presence of aggressive disease (PAD) in plasma samples collected at the time of CT-detected lung cancer. The RAD- or PAD-positive patients show a significantly worse survival rate than RAD- or PAD-negative patients (P = 0.0006 and P = 0.0001, respectively).

Fig. 1. Dnmt3A protein expression level in NSCLCs is inversely associated with overall survival. Kaplan–Meier curve showing survival of 172 NSCLC patients with different levels of Dnmt3A expression in tumors relative to adjacent normal lung. Patients with higher expression of Dnmt3A had shorter overall survival (P = 0.029).

51	CacccccAcuucAuaAuggugcuu	31	845-869 DNMT3A
31	uusscuaaasu-cuaccacsau	51	Hsa-miR-29a
5'	uacaacccGAcUUCAUAAUGGUGCUU	3'	843-869 DNMT3A
31	uugugaCUaAAGU-UUACCACGAu	5*	Hsa-miR-29b
5'	aacccgacuucauaauggugcuu	3'	846-869 DNMT3A
31	usscuaaagu-uuaccacgau	51	Hsa-miR-29c
51	cuuuuacucuucuuacuoouocuau	31	1184-1209 DNMT3B
31	uuggcuaaag-ucuaccacgau	5'	Hsa-miR-29a
51	UggAgCagccTaAcAcogToCTca	3"	244-267 DNMT3B *
3'	uugecuaaagucuaccaccau	5 '	Hsa-miR-29a
51	ggaaaactgcaaasctcggugcucc	3'	1374-1398 DNMT3B *
3'	uuggcuaaaguc-uaccaccau	51	Hsa-miR-29a
51	cuuuuacucuucuuacuoouocua	3'	1182-1209 DNMT3B
31	uuguGACUAAAG-UUUACCACGAU	51	Hsa-miR-29b
51	uuuuacuc <mark>uuc</mark> uuac <mark>uesuecu</mark> au	3*	1185-1209 DNMT3B
3"	uggcuaAAG-uuuACCACGAU	51	Has-miR-29c

Fig. 2. Complementarity sites for miR-29s in the 3'-UTR region of *DNMT3A* and -3B. The capital and bold letters identify perfect base matches, according to the TARGETSCAN 3.1 software. The PicTar software identifies two additional match regions between miR-29a and *DNMT3B*, indicated with an asterisk.

Fig. 3. MIR-29s directly target *DNMT3A* and -*B*. (a) Results of the luciferase assay for DNMT3s expression after transfection with miR-29s in A549 cells. (*b*) (*Upper*) Assessment of expression of *DNMT3A* and *DNMT3B* mRNAs by qRT-PCR, after transfection of A549 cells with miR-29s or a negative control. (*Lower*) Silencing of miR-29s with antisense molecules (A5) induces increased expression of *DNMT3A* and *DNMT3B* mRNA. (*c*) Western blot of proteins extracted from A549 cells that were cotransfected with the GFP repression vectors for the *DNMT3A* and -*B*-3'-UTR plus miR-29s or scrambled (Scr) oligonucleotides. (*d*) miR-29b acts as an endogenous primer to retrotranscribe its predicted *DNMT3B* mRNA target. Black, *DNMT3B* cDNA (GenBank accession no. NM_175848); blue, cloned and sequenced cDNAs experimentally obtained (eight clones analyzed); red, deduced RNA sequences and corresponding miR-29b. The upper underlined black and blue nucleotides have no homology between target and experimental cDNAs. The lower underlined red nucleotides represent RNA sequence complementary to cDNAs that lack homology to the miR-29b sequence. Nucleotides in bold represent the PicTar-predicted match site.

Fig. 4. Correlation of endogenous miR-29 levels with *DNMT3A/B* mRNA levels. Inverse correlation between endogenous mRNA levels of DNMT3A and DNMT3B and endogenous levels of miR-29s determined by qRT-PCR in 14 NSCLCs. R, regression coefficient; □, regression line; ◆, actual sample correlations.

Fig. 5. Effect of restoration of miR-29s on the cancer cell epigenome. (a) Global DNA methylation changes induced by miR-29s on A549 cells harvested 48 and 72 h after transfection. The results are compared with nontransfected (mock) cells and cells transfected with a scrambled oligonucleotide. (b) Determination of *FHIT* and *WWOX* mRNA levels in A549 and H1299 cells 48 h after transfection with miR-29s or a negative control by qRT PCR; miR-29s induced reexpression of *FHIT* and *WWOX* mRNAs. (c) Immunoblot of Fhit and Wwox proteins in A549 and H1299 cells 72 h after transfection with miR-29s or negative control; by 72 h, miR-29s induce increased expression of Fhit and Wwox proteins. The numbers above the immunoblot images represent the intensity of the bands relative to the GAPDH gene (upper row, Fhit; lower row, Wwox). (d) Graphical representation of the quantitative DNA methylation data for *FHIT* and *WWOX* promoter region by using the MassARRAY system. Each square represents a single CpG or a group of CpGs analyzed, and each arrow represents a sample. Methylation frequencies are displayed for each experiment in a color code that extends from light green (lower methylation frequencies) to bright red (higher methylation frequencies).

Fig. 6. Effects of miR-29s on tumorigenicity of AS49 cells. (a) Growth curve of AS49 cells transfected *in vitro* with miR-29s or scrambled oligonucleotide or mock-transfected. (b) Percentages of live cells were measured in AS49 cells transfected with scrambled oligonucleotide or with miR-29s oligonucleotides (100 nM final concentration). (c) Growth curve of engrafted tumors in nude mice injected with AS49 cells pretransfected (48 h before injection) with miR-29s, scrambled oligonucleotides, or mock transfected. (d) Comparison of tumor engraftment sizes of mock-, scrambled-, and miR-29s-transfected AS49 cells 21 days after injection in nude mice. The images show average-sized tumors from among five of each category. (e) Tumor weights ± SD in nude mice.

microRNA networks are rewired in cancer

Figure 1. The miRNA network in normal tissues (1107 samples, 50 tissues, 115 miRNAs). The network was inferred for all expressed and varying miRNAs, without preselecting for differential expression. Standard Banjo parameters were adopted with a q6 discretization policy. The consensus graph depicted here was obtained from the best 100 nets (after searching through 8.3 × 10° networks). MCL graph-based clustering algorithm was applied to clusters extraction (miRNAs with highly related expression pattern have edges of the same color); thus, different clusters in the network are linked by different color edges, yEd graph editor (yFiles software) was employed for graphs visualization. See text for further discussion.

Parametric P-value	FDR	Intensities in solid cancers	Intensities in normal tissues	Fold-change	miRNA	Chromosomal location
$<1 \times 10^{-7}$	<1 × 10 ⁻⁷	967	617.9	1.57	hsa-miR-21	17q23.1
$<1 \times 10^{-7}$	$<1 \times 10^{-7}$	1378.2	917.7	1.5	hsa-miR-25	7q22.1
<1 × 10 ⁻⁷	<1 × 10 ⁻⁷	902.7	626.3	1.44	hsa-miR-20a	13q31.3
$<1 \times 10^{-7}$	<1 × 10 ⁻⁷	925.7	646.9	1.43	hsa-miR-17	13q31.3
$<1 \times 10^{-7}$	$<1 \times 10^{-7}$	652.3	469	1.39	hsa-miR-106a	Xq26.2
$<1 \times 10^{-7}$	<1 × 10 ⁻⁷	410	297.8	1.38	hsa-miR-106b	7q22.1
1.30×10^{-6}	1.1×10^{-05}	918.8	697.9	1.32	hsa-miR-146a	5q34
$<1 \times 10^{-7}$	$<1 \times 10^{-7}$	11893.3	9370.9	1.27	hsa-miR-92a	13q31.3,Xq26.2
1.60×10^{-6}	1.2×10^{-5}	2354.9	1919.4	1.23	hsa-miR-103	5q35.1,20p13
$<1 \times 10^{-7}$	<1 × 10 ⁻⁷	289.4	237.8	1.22	hsa-miR-130b	22q11.21
$<1 \times 10^{-7}$	<1 × 10 ⁻⁷	452.7	372	1.22	hsa-miR-93	7q22.1
3.90×10^{-6}	2.7×10^{-5}	2116.4	1743.6	1.21	hsa-miR-107	10q23.31
$<1 \times 10^{-7}$	<1 × 10 ⁻⁷	297.7	248	1.2	hsa-miR-30e	1p34.2
7.4×10^{-6}	4.8×10^{-5}	225.6	259.4	0.87	hsa-miR-138	16q13,3p21.33
1×10^{-7}	1×10^{-6}	220.5	260.2	0.85	hsa-miR-326	11q13.4
3.7×10^{-6}	2.6×10^{-5}	419.9	507.8	0.83	hsa-miR-193a	17q11.2
2×10^{-7}	1.8×10^{-6}	382.5	471.2	0.81	hsa-miR-206	6p12.2
3×10^{-6}	2.2×10^{-05}	273.7	349.6	0.78	hsa-miR-205	1q32.2
$<1 \times 10^{-7}$	$<1 \times 10^{-7}$	714.9	1015.1	0.70	hsa-miR-145	5q32
<1 × 10 ⁻⁷	<1 × 10 ⁻⁷	275.7	403.0	0.68	hsa-miR-203	14g32.33

Table 1. Dif	ferentially re	egulated	miRNA in	ı solid	cancers
--------------	----------------	----------	----------	---------	---------

Solid cancer samples numbering 2532 vs. 806 corresponding normal samples, at least one class with intensity >250, P-value < 1 \times 10⁻⁵.

Figure 2. Cellular pathways regulated by differentially expressed miRNAs in cancer. KEGG analysis by ClueGO (Bindea et al. 2009) of pathways (score = 3, *P*-value < 1×10^{-3}) simultaneously targeted by both up-regulated and down-regulated miRNAs (listed in Table 1; Supplemental Tables IV, V). The KEGG pie-chart shows the functional effect of differentially expressed miRNAs on cellular pathways in cancer. The large majority of the affected pathways is related to cancer or signal transduction (i.e., Wnt, VEGF, TGF-beta, insulin, and phosphatidylinositol signaling, focal adhesion, and colorectal cancer). Target genes selection was performed with DIANA-miRpath, microT-V4.0 (Papadopoulos et al. 2009). The union of the target mRNAs with a score above 3 was used as an input to ClueGO. Right-sided hypergeometric test yielded the enrichment for GO terms. Benjamini-Hochberg correction for multiple testing controlled the *P*-values. GO term fusion was applied for redundancy reduction.

Figure 3. The miRNA network in solid cancers (2532 samples, 31 cancer types, 120 miRNAs). The network was inferred for all expressed and varying miRNAs, without preselecting for differential expression. Standard Banjo parameters were adopted with a q6 discretization policy. The consensus graph depicted here was obtained from the best 100 nets (after searching through 8.4 × 10° networks). MCL expression clusters are linked by different color edges. yEd graph editor (yFiles software) was employed for graph visualization. The miRNAs expressed differentially in the tumors are color-coded and in the graph miRNA neighbors are of the same color code: Closely clustered miRNAs are either pink (overexpressed) or green (down-regulated). The node labels, for which expression and physical alteration (CGH, see "miRNA copy number variations in cancer and leukemia" section) were concordant (i.e., overexpression and amplification), were emboldened and visually reinforced with a hexagonally shaped border.

Figure 4. Comparison of miRNA networks in normal lung and adenocarcinoma. (A) Normal lung (71 samples). A single complete miRNA network is shown. (B) Lung adenocarcinoma (125 samples). In this graph, one major and eight minor subnetworks were detected. For example, hsa-miR-10a/b, hsa-miR-29a/b, hsa-miR-107, and hsa-miR-103 are in minor independent subnetworks disjoint from the main one.

Figure 5. The KEGG functional analysis of eight disjointed minor miRNA networks in lung adenocarcinoma. The miRNA present in the unconnected cliques target genes are involved in many cancer-related terms, such as focal adhesion, small cell lung cancer, and calcium signaling. The detailed list of significant GO terms is shown in Supplemental Figure 7.

Figure 6. The miRNA network in acute myeloid leukemia (589 samples, two subnetworks). Standard Banjo parameters were adopted with a q6 discretization policy. The consensus graph depicted here was obtained from the best 100 nets (after searching through 8.5 × 10⁹ networks). The miRNA network in AML has disjointed cliques. hsa-miR-155 and hsa-miR-181, two miRNAs with clinical relevance are in two separated subnetworks, as expected from their prognostic independence. hsa-miR-181 is associated with hsa-miR-146a in a detached yellow miniclique. mir-155 belongs to the main sub-network, in the same red MCL clique of hsa-miR-223, hsa-miR-92a, hsa-miR-25, and hsa-miR-32. Finally, hsa-miR-29b has a key role in AML and acts as a hub in the AML net.

Figure 7. The miRNA network in chronic lymphocytic leukemia (254 samples, three subnetworks). Standard Banjo parameters were adopted with a q6 discretization policy. The consensus graph depicted here was obtained from the best 100 nets (after searching through >1 × 10¹⁰ networks). The network graph shows a major net and two separated minicipates: hsa-miR-23a/b and the hsa-miR-15/16 cluster, hsa-miR-15 and hsa-miR-16, two miRNAs frequently deleted in CLL, have been shown to regulate apoptosis via BCL2. The key hsa-miR-29b, acting as a hub in AML, is only a branch in CLL. AML prognostic hsa-miR-181 is disjointed in AML but not in CLL, while the reverse happens in CLL for prognostic hsa-miR-15/16 genes.

Figure 8. Deregulated miRNAs in leukemia from Mir155 transgenic mice are preferentially located close to hsa-miR-155 in the cancer network. We compared miRNA profiles of three leukemia samples from Mir155 transgenes to controls from wild-type mice. The deregulated miRNAs (Supplemental Table X) were mapped onto the cancer network and highlighted in yellow. Most of the other miRNAs are concentrated around hsa-miR-155 node (black). When a diagonal is drawn and the two sides compared the difference between yellow nodes is significant (Fisher's exact test, two-tail P-value < 0.009).