New Drugs and Therapeutic Approaches Kenneth C. Anderson, M.D.

Jerome Lipper Multiple Myeloma Center Dana-Farber Cancer Institute Harvard Medical School Integration of Novel Therapy Into Myeloma Management Bortezomib, Lenalidomide, Thalidomide, Doxil

Target MM in the BM microenvironment to overcome conventional drug resistance in vitro and in vivo

Effective in relapsed/refractory, relapsed, induction, consolidation, and maintenance therapy

Six FDA approvals and median survial prolonged from 3-4 to 6-7 years, with additional prolongation from maintenance

MAb-Based Therapeutic Targeting of Myeloma

Antibody-dependent Cellular cytotoxicity (ADCC)

Effector cells:

Complement-dependent Cytotoxicity (CDC)

CDC

Daratumumab (CD38) Apoptosis/growth arrest via targeting signaling pathways

 huN901-DM1 (CD56)
nBT062-maytansinoid (CD138)
1339 (IL-6)
BHQ880 (DKK1)
RAP-011 (activin A)
Daratumumab (CD38)

Tai & Anderson Bone Marrow Research 2011

Elotuzumab (CS1)

ADCC

Daratumumab (CD38)

MM

≻XmAb 5592 (HM1.24)

Elotuzumab Anti-CS MoAb in MM

- CS1 is highly and uniformly expressed on MM cells
- Elotuzumab (Elo) is a humanized monoclonal IgG1 antibody targeting CS1
- Clinical trial of Elo in MM achieved SD
- Anti-MM activity of Elo enhanced by lenalidomide (len) in preclinical models
- Phase I/II trials: 80-90% response to len dex elo in relapsed MM
- Phase III trial of len dex elo versus len dex in relapsed MM for new drug approval
- Hsi ED et al. Clin Cancer Res. 2008;14:2775-2784; Tai YT et al. Blood. 2008;112:1329-1337; Van Rhee F et al. Mol Cancer Ther. 2009;8:2616-2624; Lonial S et al. Blood. 2009;114:432; Richardson et al Blood 2010:864

nBT062-SPDB-DM4 (CD 138 Immunotoxin) Inhibits Human MM Cell Growth In Vivo

Phase I Trial of Vaccination with DC/MM Fusions in Relapsed Refractory MM

DC/MM fusions induce anti-MM immunity in vitro and inhibit MM cell growth in vivo in xenograft models

Vasir et al. BritJHematol 2005; 129: 687-700

- Well tolerated, no autoimmunity
- Induced tumor reactive lymphocytes in a majority of patients
- Induced humoral responses to novel antigens (SEREX analysis)
- Disease stabilization in 70% of patients

Rosenblatt et al Blood 2011; 117:393-402.

Targeting TAAs with Cocktails of Specific Peptides

•Using immunogenic HLA-A2-specific XBP1, CD138, CS1 peptides to induce MM-specific and HLA-restricted CTL responses against several MM antigens

Polyfunctional responses: IFN-γ, cytotoxicity, proliferation, CD107a degranulation to primary MM cells and cell lines

Peptide-specific responses: Individual differences in specificity, more broad response to cocktail

Bae et al, Leukemia 2011, in press

Immune Dysfunction in Myeloma TH Subset Abnormality

CpG ODNs Restore MM Patient-pDCs Immune Function and Block pDC-Induced MM Cell Growth

Chauhan et al: Cancer Cell 2009; 16:309-23.

Proteasome: Present and Future Therapies

Anti-DKK-1 MAb BHQ880 Abrogates the Inhibitory Effect of MM Cells on Osteoblastogenesis

BHQ880 Inhibits Myeloma Cell Growth in SCID-hu Mice

Anti-BAFF MAb Inhibits Osteoclasts and Prolongs Survival in SCID-Hu Model of MM

Days from treatment

Anti-BAFF Ab-Treated

Clinical Trial Ongoing

Neri et al: Clin Can Res 2007; 13: 5903.

Targeting BTK with PCI-32765 Blocks Osteoclast Formation & MM Cell Growth In BM

EVALUATION OF CDKIS IN MM

CDKI ID/ code number	Reported CDK activity	Other kinase activity	Phase of development	References				
I. Selective CDKs activity								
PD 0332991	CDK4,6/cyclin D		Phase I/II in combination with bortezomib and dexamethason in R/R MM	Baughn L et al. <i>Cancer. Res.</i> 2006				
II. Multi-CDKs activity								
Seliciclib	CDK2/cyclin A ,E CDK7/cyclin H CDK9/cyclinT1		Preclinical testing	Raje N et al. <i>Blood.</i> 2005.				
P276-00	CDK1/cyclin B CDK4/cyclin D CDK9/cyclinT1		Phase I multicenter study in R/R MM (India)	Raje N et al. <i>Leukemia.</i> 2009.				
III. Multi-CDKs and additional targeted kinase activity								
AT-7519	CDK1/cyclin B CDK2/cyclin A, E CDK4,6/cyclin D CDK7,9/cyclin H, T	GSK-3β	Phase I/II alone and in combination with bortezomib	Santo L et al. <i>Oncogene</i> . 2010				

PI3K/AKT/mTOR Inhibitors in MM

≥ <i>MR</i>	Target	+/- Dex	Bort + Dex (n=73)*	Len +/- Dex
Perifosine	AKT	38%	38 % ^{2**}	70% ³
Everolimus	mTORC1	7% ⁴		63% ⁵
Temsirolimus	mTORC1	37% ^{6***}	73 % ⁷	24% ⁸

Richardson P et al. ASH 2007. Abstract 1164; 2. Richardson PG et al. IMW 2009. Abstract A349;
Jakubowiak AJ et al. IMW 2009. Abstract A347; 4. Guenther A et al. ASCO 2010. Abstract 8137;
Mahindra AK et al. ASCO 2010. Abstract 8032; 6. Farag SS et al. *Leuk Res.* 2009;33:1475;
Ghobrial IM et al. ASH 2009. Abstract 748; 8. Hofmeister CC et al. ASH 2009. Abstract 2884.

Blockade of Ubiquinated Protein Catabolism

Targeting Proteasome and Aggresome Triggers Synergistic MM Cytotoxicity

Panobinostat + Bortezomib to Inhibit Aggresome and Proteasome In Relapsed Refracory MM

San Miguel et al, ASCO 2010

WT161 is More Potent Selective HDAC6 Inhibitor Than Tubacin

IB: Ac-K

Bench to Bedside Translation of HDAC 6 Selective Inhibitor ACY 1215

Orally bioavailable, highly potent, selective inhibitor of HDAC 6 synthesized in fall 2009

Synergistic MM cytotoxicity with Bortezomib in vitro and in vivo

Favorable PK/PD, toxicity profile

Highly favorable FDA regulatory process from pre-IND through IND allowance

Phase Ia/Ib/II clinical trial of ACY1215, alone and with Bortezomib, beginning spring 2011

Bortezomib, Lenalidomide and Dex Therapy

Lenalidomide induces caspase 8 mediated apoptosis of MM cells in BM in vitro and in vivo; Dex (caspase 9) enhances response

Synergistic MM cell toxicity of lenalidomide (caspase 8) with Bortezomib (caspase 9>8) in vitro and in vivo (dual apoptotic signaling)

Phase I-II trials show that majority (58%) of patients refractory to either agent alone respond to the combination

Phase I-II trials show 100% response with 74% CR/VGPR and 52% CR/nCR when used as initial therapy, including molecular responses.

Richardson et al JCO 2009; 27:5713-19. Richardson et al Blood 2010; 116:679-86.

IFM/DFCI Study in Newly Diagnosed MM Stem Cell Candidates

High-Throughput Screening of MM with BMSCs to Define Optimal Single Agents/Combinations

New Drug Screening in Presence of BMSCs

CHART CODE	COMPOUND NAME	TARGET	CONC. (uM)	MMIS AVG no stroma	MM1S AVG with stroma
A, B & G	Staurosporine	Pan-specific	10, 1 & 0.1	1.43	3.32
E	Sphingosine	р38 МАРК	10	4.05	103.34
Ι	Lavendustin A	EGFRK	10	9.05	99.34
Ν	Piceatannol	Syk	10	21.11	56.82
Р	Ro 31-8220	MEK	1	25.77	68.39
R	HDBA	HER1-2	10	30.71	153.95
W	BAY 11-7082	РКС	1	48.22	185.72
AB	Tyrphostin 51	EGFRK	10	63.83	152.16
AF	Kenpaullone	CaMK II	1	79.46	154.02
AH	U-0127	MEK	1	90.36	181.91
AK	Tyrphostin AG 1295	Tyrosine kinases		123.05	82.40

SNP Array Based MM Prognostic Model

Copy number analyses reveal novel prognostic classification

Identifies regions of clinical importance especially del12p and amp 5q

SNParrays highlight few regions with bi-allelic deletions

SNP analysis may lead to an individual therapeutic approach.

Avet-Loiseau et al JClin Oncol 2009; 27: 4585-90.

MM Genome Sequencing (MMRF)

19/38 (50%) newly diagnosed

19/38 (50%) received prior treatment

19/38 (50%) del 13q14 2/38 (5%) del 17p13 3/38 (8%) del 1p32

Chapman et al Nature 2011; 471: 467-72

Mutations in Myeloma

- Protein homeostasis: 42% including FAM46C, RPL10, RPS6KA1, EIF3B, XBP1, LRRK2
- NF-kB signaling: 10 point mutations, 4 additional structural re-arrangements affecting coding
- IRF-4, Blimp-1: 2 mutations each
- Histone methylating enzymes: WHSC1, UTX, MLL
- **BRAF:** 4% activating

Chapman et al Nature 2011; 471: 467-72

Whole Genome Paired End Sequencing Identifies Genomic Evolution in Myeloma

Early Tumor Circos Plots Late Tumor

PD3823c

PD3825c

Munshi at al ASH 2009

Current and Future Directions

- 1. Development of immune (vaccine and adoptive immunotherapy) therapies
- 2. Development of novel agents targeting the MM cell in the BM microenvironment
- 3. Development of rationally-based combination therapies
- 4. Utilization of genomics for improved classification and personalized therapy

Myeloma will be a chronic illness, with sustained CR in a significant fraction of patients.

United Nations Against Myeloma: Jerome Lipper and Lebow Bench to Bedside Research Team

USA

 $\overline{\mathbf{N}}$

UK

India

Italy

XX

Israel

Robert Schlossman Irene Ghobrial Steven Treon **Jacob Laubach** Deborah Doss Kathleen Colson Mary McKenney Kim Noonan **Tina Flaherty** Kathleen Finn **Muriel Gannon Stacey Chuma** Janet Kunsman **Diane Warren Carolvn Revta** Andrea Freeman **Alexis Fields** Andrea Kolligian John Feather Farzana Masood Nora Loughney Heather Goddard **Tiffany Poon** Nicole Stavitzski **Raniit Banwait** Shawna Corman **Heather Goddard** Meghan Marie Leahy Caitlin O'Gallagher Christina Tripsas Karin Anderson Shannon Viera Katherine Redman Amber Walsh Samir Amin Wanling Xie Parantu Shah Holly Bartel Lisa Popitz

Jeffrey Sorrell

Kenneth Anderson

Paul Richardson

Nikhil Munshi

Japan

Canada

Austria

China

Teru Hideshima **Constantine Mitsiades** Dharminder Chauhan Noopur Raie Yu-Tzu Tai Ruben Carrasco **James Bradner** Gullu Goraun Jooeun Bae Francesca Cottini Michele Cea Antonia Cagnetta Teresa Calimeri Edie Weller Aiita Singh Ze Tian Diana Cirstea Yiquo Hu Naova Mimura **Jiro Minami** Sun-Yung Kong Weihua Song **Douglas McMillin** Catriona Haves Steffen Klippel Jana Jakubikova Panisinee Lawasut Niels van de Donk **Eugen Dhimolea** Jake Delmore Hannah Jacobs Masood Shammas Mariateresa Fulciniti **Jianhong Lin** Jagannath Pal Samantha Pozzi Loredana Santo **Claire Fabre** Anuj Mahindra **Rao Prabhala** Jake Delmore Puru Nanjappa Michael Sellito Avani Vaishnav

Taiwan

