

Prognostic relevance of 18F-FDG PET/CT in newly diagnosed multiple myeloma patients receiving upfront autologous stem-cell transplantation: a prospective study

Zamagni E.¹, Nanni C.², Patriarca F.³, Zannetti B.¹, Pezzi A.¹, Tacchetti P.¹, Englaro E.⁴, Perrone G.¹, Buttignol S.³, Brioli A.¹, Pantani L.¹, Caroborante F.³, Baccarani M.¹, Fanti S.², Cavo M¹

- ¹"Seragnoli" Institute of Hematology, University of Bologna
- ² Institute of Nuclear Medicine, University of Bologna
- ³ Hematologic Clinic, University of Udine
- ⁴ Institute of Nuclear Medicine, University of Udine

Disclosures for Elena Zamagni

Research Support/P.I.	No relevant conflicts of interest to declare
Employee	No relevant conflicts of interest to declare
Consultant	No relevant conflicts of interest to declare
Major Stockholder	No relevant conflicts of interest to declare
Speakers Bureau	No relevant conflicts of interest to declare
Honoraria	No relevant conflicts of interest to declare
Scientific Advisory Board	No relevant conflicts of interest to declare

BACKGROUND

- •18F-FDG PET/CT is a valuable method to carefully monitor response and predict clinical outcomes in various tumors, particularly lymphoma
- •Incorporation of novel agents into ASCT affected unprecedented rates of CR in young MM patients
- More sensitive techniques for detecting MRD after ASCT are required

AIM OF THE STUDY

 To prospectively evaluate the prognostic significance of FDG-PET/CT at diagnosis, after induction therapy and after high dose therapy in patients with newly diagnosed MM who received thalidomide incorporated into up-front autologous stem cell transplantation (ASCT)

PATIENT POPULATION

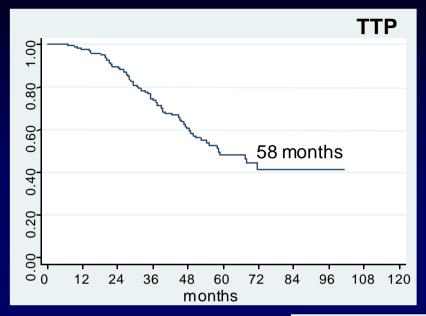
- N° analyzed patients: 192
- Median follow-up: months 42
- Median follow-up of living patients: months 43

FDG-PET/CT STUDIES

- FDG-PET/CT performed:
 - at baseline
 - post induction therapy
 - 3 months after ASCT
 - every year during follow-up
 - at relapse
- Bone marrow involvement: negative, diffuse, number of focal lesions (> 0.5 cm)
- SUV value
- Presence of extramedullary disease

BASELINE PATIENT CHARACTERISTICS

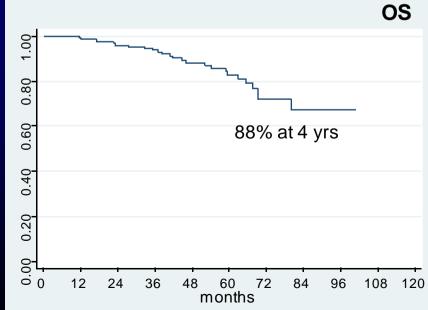
N°patients	192
Median age (range)	56 (35-66)
% pts with creat >2	8
% pts with Ca > 10	9
ISS stage II-III (% pts)	45
% pts with del (13q)*	43
% pts with t(4;14)*	23
% pts with del(17p)*	15
ASCT	
-single (% pts)	40
-double (%pts)	60

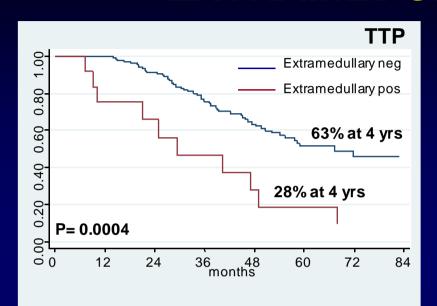

*80% pts screened for cytogenetic abnormalities (FISH) on CD 138+ bone marrow PC

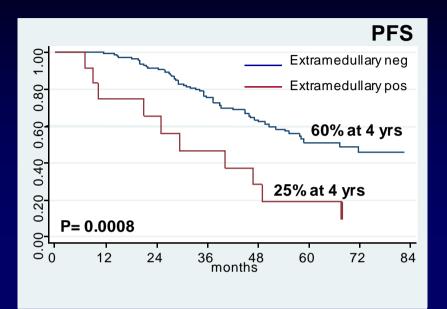

BASELINE FDG-PET/CT CHARACTERISTICS

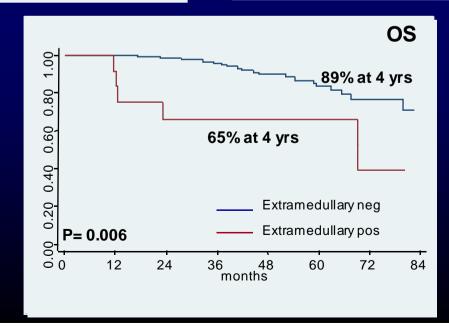
N° patients	192
Negative (% pts)	24
Positive (% pts)	76
1-3 focal lesions(% pts)	32
>3 FL or diffuse(% pts)	44
SUV(% pts)	
low (≤ 4.2)	54
high (>4.2)	46
Extramedullary disease (% pts)*	6

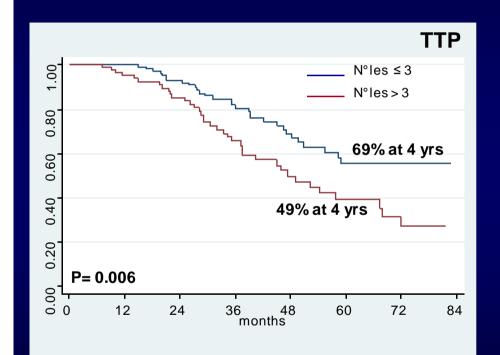
^{*}defined as presence of FDG-avid soft tissue not contiguous to bone

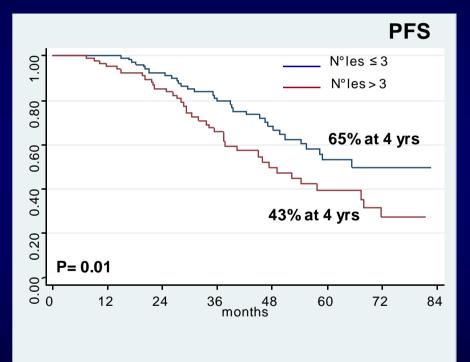

CLINICAL OUTCOMES

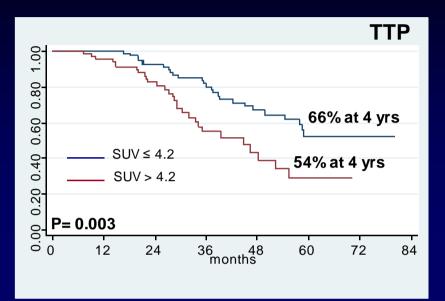


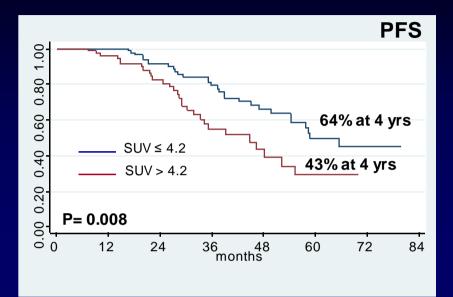

Best overall response: ≥VGPR rate 80%

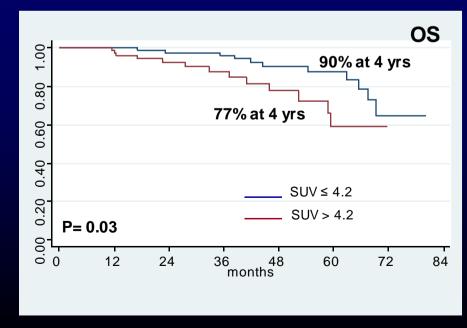

CR rate 52%


TTP, PFS AND OS IN PATIENTS WITH EXTRAMEDULLARY DISEASE

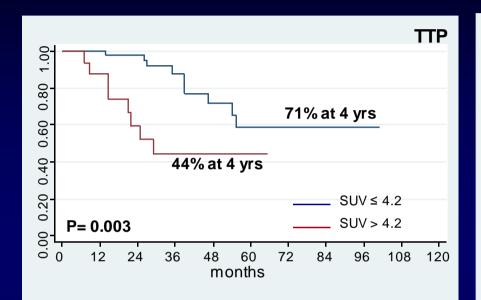


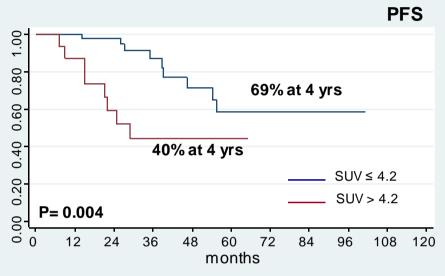


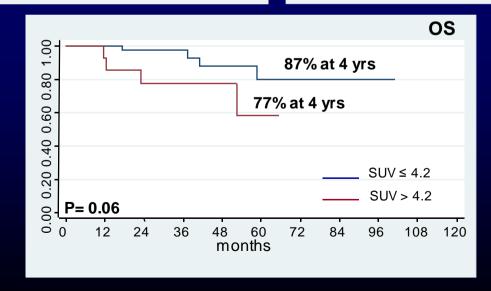

TTP AND PFS ACCORDING TO BASELINE FDG-PET/CT: NUMBER OF LESIONS



TTP, PFS AND OS ACCORDING TO BASELINE FDG-PET/CT: SUV VALUE

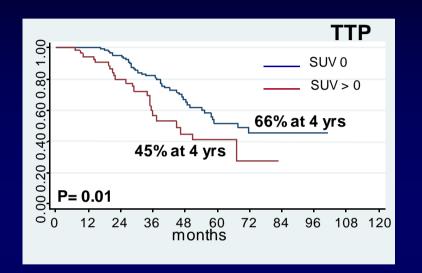

MULTIVARIATE ANALYSIS OF BASELINE UNFAVORABLE PROGNOSTIC FACTORS

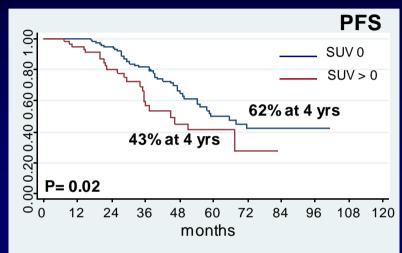

VARIABLES	HAZARD RATIO (95% CI)	P VALUE	
TTP			
PET/CT > 4.2 SUV	2.37 (1.26-4.33)	0.007	
Extramedullary disease	15. 43 (4.11-57.95)	0.000	
del (17p) ± t(4;14)	1.86 (1.12-3.49)	0.05	
PFS			
PET/CT > 4.2 SUV	2.05 (1.13-3.72)	0.018	
Extramedullary disease	15. 00 (4.03-55.88)	0.000	
del (17p) ± t(4;14)	2.03 (1.10-3.72)	0.02	
OS			
Extramedullary disease	6. 99 (2.28-21.46)	0.001	
del (17p) ± t(4;14)	2.36 (1.23-6.02)	0.05	

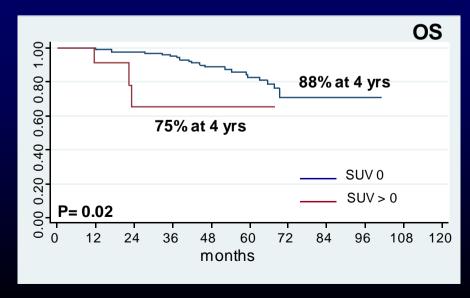

POST INDUCTION FDG-PET/CT CHARACTERISTICS

N°patients	85
Negative (%)	37
Positive (%)	63
-improved	14
-unchanged	43
-worstened	6

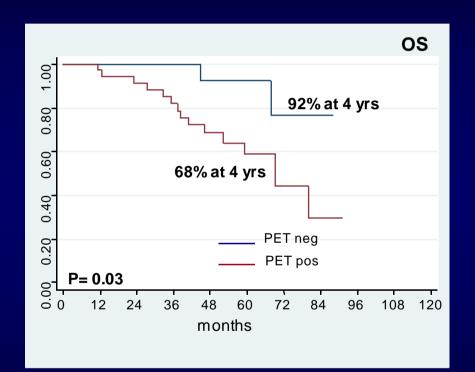
TTP, PFS AND OS ACCORDING TO POST-INDUCTION FDG-PET/CT

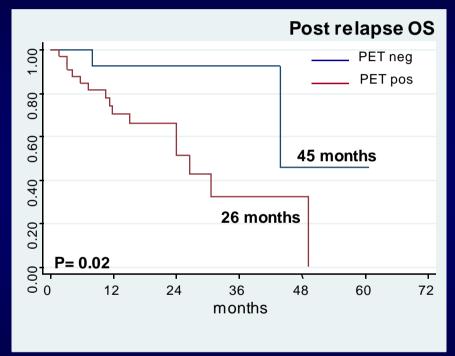





POST ASCT FDG-PET/CT CHARACTERISTICS

N°patients	192	
Negative (%)	65	
Positive (%)	35	
-improved	17	
-unchanged	14	
-worstened	4	
Negative + ≥ VGPR (%)	95 $P = 0.00$	1
Positive + ≥ VGPR (%)	75	


TTP, PFS AND OS ACCORDING TO POST ASCT FDG-PET/CT



OS ACCORDING TO FDG-PET/CT IMAGING AT RELAPSE

MULTIVARIATE ANALYSIS OF BASELINE LABORATORY AND POST TREATMENT UNFAVORABLE PROGNOSTIC FACTORS

VARIABLES	HAZARD RATIO (95% CI)	P VALUE		
TTP				
Not complete FDG PET suppression	2.12 (1.19-3.77)	0.01		
Extramedullary disease	15. 43 (4.11-57.95)	0.000		
del (17p) ± t(4;14)	1.86 (1.12-3.49)	0.05		
< VGPR	2.10 (1.13-3.88)	0.017		
PFS				
Not complete FDG PET suppression	2.12 (1.19-3.77)	0.023		
Extramedullary disease	5. 47 (1.89-15.81)	0.002		
del (17p) ± t(4;14)	1.92 (1.09-3.39)	0.025		
< VGPR	2.11 (1.16-3.83)	0.013		
OS				
Not complete FDG PET suppression	3.57 (1.03-12.39)	0.04		
Relapse	9.56 (2.85-32.05)	0.000		

CONCLUSION

- •Independent impact of FDG-PET/CT at diagnosis on clinical outcomes (TTP, PFS and OS)
 - number of focal lesions
 - intensity of tumor metabolism (SUV)
 - •EMD
- •Persistence of high tumor metabolism (SUV) by FDG-PET/CT after induction therapy predicted worst outcome (TTP, PFS and OS)

CONCLUSION

- •FDG-PET/CT after ASCT is a reliable tool to predict prognosis and identify patients at different risk of progression.
- •Complete FDG suppression after ASCT was associated with extended PFS and OS both in univariate and multivariate analysis
- •FDG-PET/CT involvement at the time of relapse was associated with shortened survival after relapse

CONCLUSION

•Based on these data and additional data from other groups, aims to evaluate MRD after ASCT should include also imaging techniques such as FDG-PET/CT and/or whole body MRI

ACKNOWLEDGMENTS

Myeloma Research Unit

Michele Cavo

Elena Zamagni

Beatrice Zannetti

Francesca Patriarca

Silvia Buttignol

Paola Tacchetti

Giulia Perrone

Annamaria Brioli

Lucia Pantani

Francesca Caroborante

Nuclear Medicine

Cristina Nanni

Emanuela Englaro

Stefano Fanti

Paolo Castellucci

Statistical Analysis

Annalisa Pezzi Mauro Fiacchini Katia Vitali