
Heparanase and syndecan -1: Promoters of 
aggressive myeloma behavior and 

targets for therapy

Ralph Sanderson, PhD
Department of Pathology

THE UNIVERSITY OF
ALABAMA  AT BIRMINGHAM



Conflict of interest disclosure

Work on the heparanase inhibitor SST0001 was funded
in part by Sigma-tau Pharmaceuticals.



Tumor-host crosstalk regulates the microenvironment   to 
promote myeloma progression
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Heparanase and syndecan-1 promote 
myeloma progression

Core protein

Heparanase

Sheddase

Heparan sulfate

Cell membrane

• High syndecan- 1 in patients serum correlates with 
high tumor mass and poor prognosis (Dhodapkar 
et al., 1997; Seidel et al., 2000)

• Shed syndecan- 1 enhances myeloma growth and 
metastasis in vivo (Yang et al., 2002)

• Knockdown of syndecan-1 or heparan sulfate 
inhibits  growth in vivo (Khotskaya et al., 2009; 
Reijmers et al., 2010)
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• High heparanase activity in patient plasma correlat es 
with high microvessel density (Kelly et al., 2003)

• Heparanase promotes myeloma growth and 
metastasis (Yang et al., 2005) 

• High heparanase is an indicator of poor prognosis in  
myeloma (Mahtouk et al., 2007) 
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Heparanase and syndecan-1 regulate 
the myeloma microenvironment
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Heparanase as a therapeutic target:
- there appears to be a single active heparanase in humans
- heparanase knockout mice show no obvious deficits

SST0001: A potent heparanase inhibitor engineered
by chemically modifying heparin

SST0001:
- potent inhibitor of heparanase activity 
- non-anticoagulant
- not degraded by heparanase

Heparin ST0001



SST0001 inhibits growth of subcutaneous 
myeloma tumors
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SST0001 blocks CAG myeloma tumor growth 
in human bones

P< 0.003

PBS            SST0001

PBS

SST0001

Human Kappa levels (tumor burden) 

SCID-hu mouse

SST0001 does not inhibit growth of 
tumor cells in vitro 



SST0001 inhibits heparanase-enhanced syndecan-1 
shedding, angiogenesis and gene expression
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SST0001 disrupts the establishment of a microenviro nment 
that supports aggressive tumor growth

SST0001 inhibits heparanase-enhanced syndecan-1 
shedding, angiogenesis and gene expression

Subcutaneous tumors
MVD analysis in SCID-hu tumors
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How is heparanase regulating gene expression?
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Heparanase decreases the level of nuclear 
syndecan-1 in myeloma cells

Immunostaining for syndecan-1 

Non nuclear
Nuclear 
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What is the role of syndecan-1 in the nucleus?

� Heparan sulfate/heparin inhibit histone acetyltrans ferase (HAT) activity  
(Buczek-Thomas et al.)

� HATs modify the N-terminal tail region of histones by acetylating key lysines  
altering DNA-histone and histone-histone contacts t o enhance binding of 
transcriptional complexes to DNA

� Abnormal HAT activity is associated with the develo pment of cancer



Heparanase upregulates histone acetyltransferase
(HAT) activity in myeloma cells

HAT activity assay - nuclear extracts from heparanas e low and high CAG cells

P <0.05 
P <0.05 
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Heparanase upregulates HAT activity

Immunostaining for acetylated histone H3

Low High

Heparanase expression (CAG cells)

Cells in culture

Tumors in SCID mice



Syndecan-1 inhibits HAT activity in 
heparanase-high cells
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Inhibition of HAT activity inhibits heparanase-medi ated 
upregulation of MMP-9 and VEGF gene expression
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Inhibition of heparanase decreases HAT-regulated ex pression of 
genes that promote aggressive tumor behavior
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Conclusions

� Heparanase  and syndecan-1 facilitate tumor-host cr osstalk in the  
microenvironment that enhances myeloma growth, diss emination, 
angiogenesis and osteolysis

� Heparanase modifies the tumor microenvironment by:
� Enhancing shedding of syndecan-1

� Shed syndecan-1 binds growth factors and facilitate s signaling 
through growth factor receptors

� Shed syndecan-1 can activate integrins and promote their signaling
� Upregulating tumor cell expression of MMP-9, VEGF, HGF & RANKL

� The mechanism of regulation of gene expression by h eparanase is mediated, 
at least in part, by disruption of syndecan-1 local ization to the nucleus 
resulting in enhanced histone acetyltransferase act ivity

� Inhibitors of heparanase represent a viable therape utic approach for myeloma 
and other cancers
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