Heparanase and syndecan-1: Promoters of aggressive myeloma behavior and targets for therapy

> Ralph Sanderson, PhD Department of Pathology

Conflict of interest disclosure

Work on the heparanase inhibitor SST0001 was funded in part by Sigma-tau Pharmaceuticals.

Tumor-host crosstalk regulates the microenvironment to promote myeloma progression

Heparanase and syndecan-1 promote myeloma progression

Heparanase

- High heparanase activity in patient plasma correlates with high microvessel density (Kelly *et al.*, 2003)
- Heparanase promotes myeloma growth and metastasis (Yang et al., 2005)
- High heparanase is an indicator of poor prognosis in myeloma (Mahtouk et al., 2007)

Syndecan-1 (CD138)

- High syndecan-1 in patients serum correlates with high tumor mass and poor prognosis (Dhodapkar et al., 1997; Seidel et al., 2000)
- Shed syndecan-1 enhances myeloma growth and metastasis in vivo (Yang *et al.*, 2002)
 - Knockdown of syndecan-1 or heparan sulfate inhibits growth in vivo (Khotskaya *et al.*, 2009; Reijmers *et al.,* 2010)

Heparanase and syndecan-1 regulate the myeloma microenvironment

SST0001: A potent heparanase inhibitor engineered by chemically modifying heparin

Heparanase as a therapeutic target:

- there appears to be a single active heparanase in humans
- heparanase knockout mice show no obvious deficits

SST0001:

- potent inhibitor of heparanase activity
- non-anticoagulant
- not degraded by heparanase

SST0001 inhibits growth of subcutaneous myeloma tumors

RPMI-8226 tumors

SST0001 blocks CAG myeloma tumor growth in human bones

SCID-hu mouse

Human Kappa levels (tumor burden)

SST0001 does not inhibit growth of tumor cells in vitro

SST0001 inhibits heparanase-enhanced syndecan-1 shedding, angiogenesis and gene expression

Saline

SST0001

MMP-9

SST0001 inhibits heparanase-enhanced syndecan-1 shedding, angiogenesis and gene expression

MVD analysis in SCID-hu tumors

SST0001 disrupts the establishment of a microenvironment that supports aggressive tumor growth

How is heparanase regulating gene expression?

Heparanase decreases the level of nuclear syndecan-1 in myeloma cells

Heparanase expression : (CAG myeloma cells)

High

Low

Immunostaining for syndecan-1

ELISA

What is the role of syndecan-1 in the nucleus?

- Heparan sulfate/heparin inhibit histone acetyltransferase (HAT) activity (Buczek-Thomas et al.)
- HATs modify the N-terminal tail region of histones by acetylating key lysines altering DNA-histone and histone-histone contacts to enhance binding of transcriptional complexes to DNA
- > Abnormal HAT activity is associated with the development of cancer

Heparanase upregulates histone acetyltransferase (HAT) activity in myeloma cells

HAT activity assay - nuclear extracts from heparanase low and high CAG cells

Heparanase upregulates HAT activity

Immunostaining for acetylated histone H3

Syndecan-1 inhibits HAT activity in heparanase-high cells

Inhibition of HAT activity inhibits heparanase-mediated upregulation of MMP-9 and VEGF gene expression

MMP-9 mRNA (qPCR)

VEGF mRNA (qPCR)

Anacardic acid:

Inhibition of heparanase decreases HAT-regulated expression of genes that promote aggressive tumor behavior

Conclusions

- Heparanase and syndecan-1 facilitate tumor-host crosstalk in the microenvironment that enhances myeloma growth, dissemination, angiogenesis and osteolysis
- > Heparanase modifies the tumor microenvironment by:
 - Enhancing shedding of syndecan-1
 - Shed syndecan-1 binds growth factors and facilitates signaling through growth factor receptors
 - Shed syndecan-1 can activate integrins and promote their signaling
 - Upregulating tumor cell expression of MMP-9, VEGF, HGF & RANKL
- The mechanism of regulation of gene expression by heparanase is mediated, at least in part, by disruption of syndecan-1 localization to the nucleus resulting in enhanced histone acetyltransferase activity
- Inhibitors of heparanase represent a viable therapeutic approach for myeloma and other cancers

Acknowledgements

Sanderson Lab

Present

Li Nan Anurag Purushothaman Vishnu Ramani Joe Ritchie Ivonne Rivera Yang Yang

Past Past

Ligong Chen Yuemeng Dai Yan Huang Yekaterina Khotskaya Veronica MacLeod Telisha Swain Allison Theus Toru Uyama

Funding: National Institutes of Health Multiple Myeloma Research Foundation Sigma-tau Pharmaceuticals, Inc.

Collaborators

Ronzoni Institute – Benito Casu, Giangiacomo Torri, Annamaria Naggi, Marco Guerrini Sigma-tau Pharmaceuticals – Claudio Pisano, Sergio Penco Technion – Israel Vlodavsky Weizmann Institute – Oded Livnah, Gali Golan University of Arkansas for Medical Sciences – Bart Barlogie, Josh Epstein, John Shaughnessy, Shmuel Yaccoby, Frank Zhan, Tom Kelly, Larry Suva University of Wisconsin, Madison – Alan Rapraeger, Brian Ell