Clonal evolution in MGUS

Shaji Kumar, M.D. Professor of Medicine Mayo Clinic

Scottsdale, Arizona

Rochester, Minnesota

Jacksonville, Florida

Mayo Clinic College of Medicine Mayo Clinic Comprehensive Cancer Center

Monoclonal plasma cell disorders: a dynamic spectrum

MAYO CLINIC

Increasing levels of monoclonal protein

Increasing marrow plasma cell percentage

Development of CRAB features

Spectrum of monoclonal gammopathies

Kyle et al, NEJM, Volume 356:2582-2590, June 21, 2007

Risk factors for plasma cell disorders

- Race: Higher risk in African Americans
 Similar risk in a population from Ghana
- Chemical and radiation exposure
 - Increased risk among those with pesticide exposure
- Familial risk
 - Increased risk among first degree relatives

MGUS prevalence for first-degree relatives of MM or MGUS

MAYO CLINIC

Vachon C M et al. Blood 2009;114:785-790

MGUS is a true "pre-cancerous" state

- MM is always preceded by MGUS stage
- Among 77 469 healthy adults from PLCO Cancer Screening Trial: 71 subjects developed MM

Proportion with MGUS

Landgren O, Blood. 2009 :5412-7.

MGUS starts early

MAYO CLINIC

Therneau, T. M., et al. (2012) Mayo Clin Proc 87(11): 1071-1079.

MGUS risk of progression

MAYO CLINIC

Kyle et al, N Engl J Med 2002; 346:564-569

Clonal Evolution Paradigm

Evolution of the clonal plasma cell

The malignant clonal PC

But.....morphology inadequate to differentiate the 'malignant' clonal plasma cell 🙁

FISH abnormalities in PCD

MAYO CLINIC

Kumar S, *Blood*. 2012;119(9):2100-2105

FISH abnormalities in MM

Trisomies and outcome in myeloma

Kumar S, Blood. 2012;119(9):2100-2105

FISH abnormalities in MM and SMM

FISH abnormality	Frequency (%)	
	SMM (N=351)	MM (N=484)
Trisomy (ies) without IgH abnormality	154 (44%)	201 (42%)
IgH abnormality without trisomy (ies)	127 (36%)	146 (30%)
IgH abnormality with Trisomy (ies)	14 (4%)	74 (15%)
Other cytogenetic abnormalities	3 (1%)	48 (10%)
Normal / insufficient	53 (16%)	15 (3%)

MAYO CLINIC

Rajkumar et al, Leukemia. March 2013 (epub); Kumar S, Blood. 2012;119(9):2100-2105

Genetic abnormalities and risk of progression in SMM

FISH abnormalities in MGUS

Kumar et al, unpublished data

FISH evolution in plasma cell disorders

MAYO CLINIC

* As a proportion of all patients, others as a proportion of FISH with adequate PCs

Kumar et al, unpublished data

Trisomies and risk of progression in MGUS

Kumar et al, unpublished data

Phenotypic classification and genetic type

CKS1 amplification

	n	BM PCs (median %)	CKS1B AMP
MGUS	24	4.5 (3-8)	0/23 (0%)
MM at diagnosis	50	62 (15–95)	18/50 (36%)
MM at relapse	25	60 (20–100)	13/25 (52%)
PCL	26	80 (20–100)	16/26 (62%)

MAYO CLINIC

Chang, H., et al. (2006). Br J Haematol 134(6): 613-615; Hanamura, I., et al. (2006). Blood 108(5): 1724-1732.

Copy number abnormalities

Gene expression changes

MAYO CLINIC

Davies, F. E., et al. (2003). Blood 102(13): 4504-4511.

The role of MYC

Kuehl W M , and Bergsagel P L Blood 2012;120:2351-2352

Myc as a marker of malignant progression

Chng et al Leukemia 2011

Malignant PC = unstable genome

MAYO CLINIC

Egan J B et al. Blood 2012;120:1060-1066

Patterns of clonal evolution in MM

The evolution of MGUS

Clonal expansion

Lopez-Corral, L., et al. (2011) Clin Cancer Res 17(7): 1692-1700.

Increasing proportion of abnormal PCs

Table 2. Aberrant phenotypic profile in SMM and MGUS patients

CD45	CD19	CD56	%
-	-	++	50
-	-	-	24
-/dim	-	+	11
-	+	++	8
Dim	-	-	5
-	+	-	1
+	Dim	++	1

MAYO CLINIC

Perez-Persona, E., et al. BLOOD, VOLUME 110, NUMBER 7

Other phenotypic markers

- Expression of a wide panel of antigens have been used to identify the "malignant plasma cell":
 - CD38/ CD45/ CD56/ CD19/ CD117/ CD27/ CD28
- Proportion of CD45- PCs increase with disease progression
- CD200 + PCs are significantly higher in MM compared with MGUS

Paiva, B., et al. (2010) Cytometry B Clin Cytom **78**(4): 239-252, Kumar, S., et al. (2005). " Leukemia **19**(8): 1466-1470.Olteanu, H., et al. (2012). Am J Clin Pathol **138**(6): 867-876.

Angiogenesis and progression

Rajkumar et al, Clinical Cancer Research 6, 3111, (2000); Kumar, S. et al. Blood 2004;104:1159-1165

Suppression of uninvolved immunoglobulin pair

Model	Prognostic factor	Hazard ratio (95% CI)	P-value
	HLC-pair suppression	1.8 (1.1, 3.0)	0.018
	Serum M-spike ≥ 1.5 gm/dl	2.3 (1.5, 3.8)	<0.001
	Abnormal FLC κ/λ ratio	2.0 (1.2, 3.4)	0.007
	IgA or IgM heavy chain	2.7 (1.6, 4.6)	<0.001

cumulative probability of progression

MAYO CLINIC

Katzmann, J. A., et alLeukemia 27(1): 208-212.

Alterations in T-cell function

Significantly decreased number of *FOXP3*⁺ T_{reg} cells in MGUS

Lack of suppression of T-cell proliferation by Treg cells in MGUS

FLC abnormality %

• Abnormal FLC ratio 0.26-1.65

FLC ratio and the risk of progression

MAYO CLINIC

Rajkumar S V et al. Blood 2005;106:812-817

Circulating PCs and risk of progression

MAYO CLINIC

Kumar S et al. JCO 2005;23:5668-5674

Smoldering myeloma paradigm

Kyle et al, NEJM, Volume 356:2582-2590, June 21, 2007

Progression to Symptomatic MM

• <u>Risk factors</u>: Higher M spike, higher plasma cell burden, type of M protein, Abnormal free light chain ratio, circulating plasma cells

The progression paradigm...

The "molecular" future...

Acknowledgements

Rochester

Vincent Rajkumar, MD Francis Buadi, MD David Dingli, MD, PhD Angela Dispenzieri, MD Morie Gertz, MD Suzanne Hayman, MD Shaji Kumar, MD **Robert Kyle, MD** Martha Lacy, MD **Nelson Leung, MD** John Lust, MD Arleigh McCurdy, MD Greg Nowakowski, MD Steve Russell, MD, PhD Steve Zeldenrust, MD, PhD

Arizona

Leif Bergsagel, MD Rafael Fonseca, MD Joseph Mikhael Craig Reeder, MD Keith Stewart, MD

Jacksonville

Asher Chanan-Khan, MD Vivek Roy, MD Tamur Sher, MD

Thank you

MYC driven MM occurs in a mouse strain that spontaneously develops MGUS (C57Bl/6), but not in one that does not (Balb/c)

Vk*MYC generated in pure C57BL/6j strain were backcrossed > 10 times into Balb/c strain The plasma cell content (in %) of wt and Vk*MYC mice > 60w old is shown, as well as SPEP of age matched Vk*MYC mice in both strain MAYO CLINIC

Chesi et al. unpublished