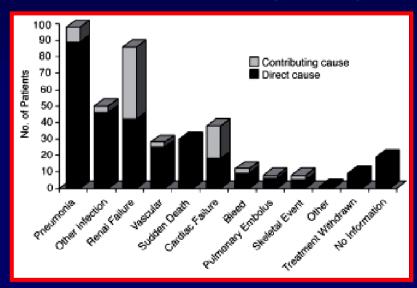


14[™] International Myeloma Workshop

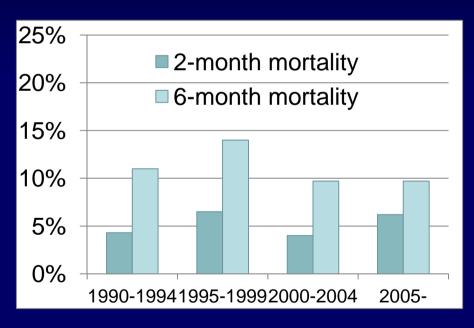
IMW2013 Kyoto April 3-7, 2013 Kyoto International Conference Center, Kyoto, Japan

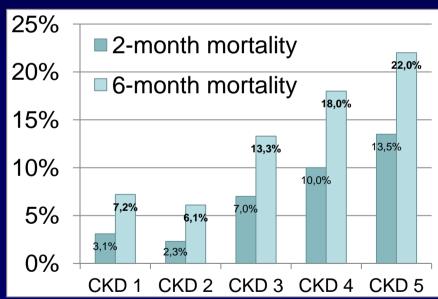
Diagnostic Procedures and Management of Renal Impairment in Myeloma

Meletios A. Dimopoulos, MD


Department of Clinical Therapeutics University of Athens School of Medicine Athens, Greece

Renal Failure in Multiple Myeloma


- Renal failure is an important complication of myeloma
- Moderate renal impairment in 20-30% at presentation
- Severe renal failure in 3-5%
- Renal impairment in up to 50% during follow up
- 2-5% of myeloma patients require long-term dialysis
- Increased risk of early mortality


Early mortality before day 60 in MRC trials 1980-2002 (n=3,107)

Early mortality and RI

Severe RI was associated with a substantial increase of early mortality

Diagnostic Evaluation of Myeloma Patients Presenting with Renal Impairment

At diagnosis:

sCreatinine, urea, sodium and potassium, calcium and eGFR (MDRD formula)

Measurement of total protein, electrophoresis and immunofixation of a sample

from a 24 h urine collection

Serum Free Light Chains

The patient has proteinuria, which consists mainly of light chains¹

A renal biopsy is probably not necessary but may be helpful in patients in whom other conditions (diabetes, chronic hypertension) are present The patient has non-selective proteinuria or significant albuminuria

Consider the presence of amyloidosis or MIDD or other comorbid conditions:

- Biopsy of the subcutaneous fat or a rectal biopsy may show amyloidosis (Congo red +)
- Renal biopsy is often necessary

If the patient does not have proteinuria, consider alternative diagnosis for RI

Management of Acute Renal Impairment in Myeloma Patients

1. Supportive Care

2. Mechanical Approaches (plasma exchange, conventional hemodialysis, high cut-off hemodialysis)

3. Systemic Antimyeloma Treatment

Management of Renal Impairment/Failure Supportive care

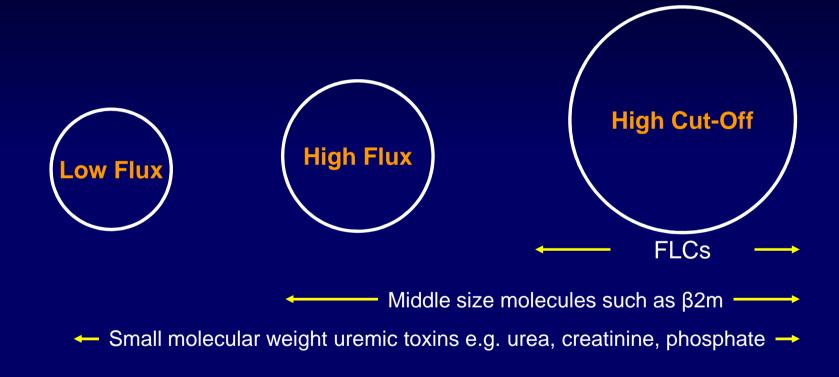
- Hydration
 - Salt free saline (Dextrose) may be prefered than normal saline
 - Hydration should be combined with anti-myeloma treatment
- Urine alkalinization (to reduce cast formation)
- Management of hypercalcemia
 - Bisphosphonates (increased risk of renal toxicity and subsequent hypocalcemia)
 - In mild asymptomatic hypercalcemia conservative measures such as hydration may suffice
 - For moderate or severe hypercalcemia, prompt initiation of antimyeloma therapy.
 - Calcitonin may reduce calcium levels without causing severe hypocalcemia and without the risk of renal toxicity.
 - The use of furosemide to treat hypercalcemia, is discouraged (increases formation of casts in the renal tubule)
- Treatment of infections
- Avoidance of nephrotoxic agents (NSAIDS, aminoglycoside antibiotics and contrast dyes)

Management of Acute Renal Impairment in Myeloma Patients

1. Supportive Care

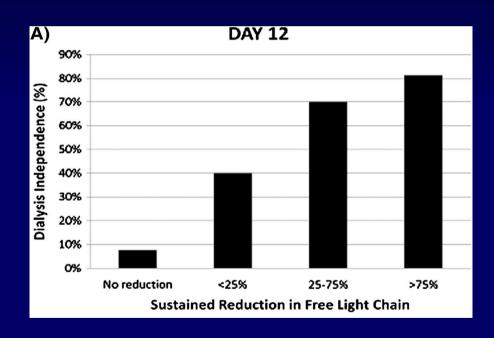
2. Mechanical Approaches (plasma exchange, conventional hemodialysis, high cut-off hemodialysis)

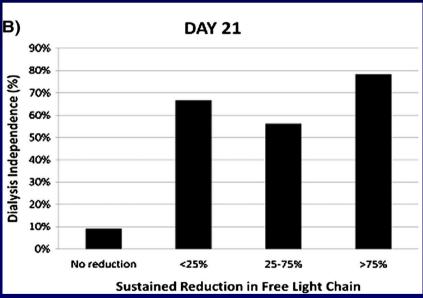
3. Systemic Antimyeloma Treatment


Randomized Trials: Plasma Exchange + Hemodialysis vs. Hemodialysis Only

Reference	Number of patients	Off dialysi		
		With plasma exchange	Without plasma exchange	P
Zucchelli <i>et al</i> ¹	19 newly diagnosed 10 relapsed	11/15	2/14	<0.01
Johnson <i>et al</i> ²	21 newly diagnosed	5/10	4/11	ns
Clark et al ³	97 newly diagnosed	36/58	27/39	ns

Benefit of plasma exchange not established


¹Zucchelli et al. Kidney Int 1988;33:1175-80 ²Johnson et al. Arch Intern Med 1990;150:863-9 ³Clark et al. Ann Intern Med 2005;143:777-84


High Cut-Off Permeability

Treatment of Acute Renal Failure Secondary to MM with Chemotherapy and Extended High Cut-Off Hemodialysis

Patients (n=67) with cast nephropathy and dialysis dependent acute renal failure 85% were treated with dexamethasone in combination bortezomib or thalidomide the median number of HCO-HD sessions was 11 (range 3–45)

Factors which predicted independence of dialysis were the degree of FLC reduction at Days 12 (P = 0.002) and 21 (P = 0.005) and the time to initiating HCO-HD (P = 0.006).

European trial of free Light chain removal by exTEnded haemodialysis in cast nephropathy (EuLITE)

90 Patients to be recruited

Randomisation

Control arm HD
45 Patients
Standard high-flux HD

Research arm HD

45 Patients

Extended HD on HCO 1100

'Modified PAD regimen'

Bortezomib iv

Adriamycin (doxorubicin) iv

Dexamethasone po

Primary outcome: independence of dialysis at 3 months

http://clinicaltrials.gov (NCT00700531)

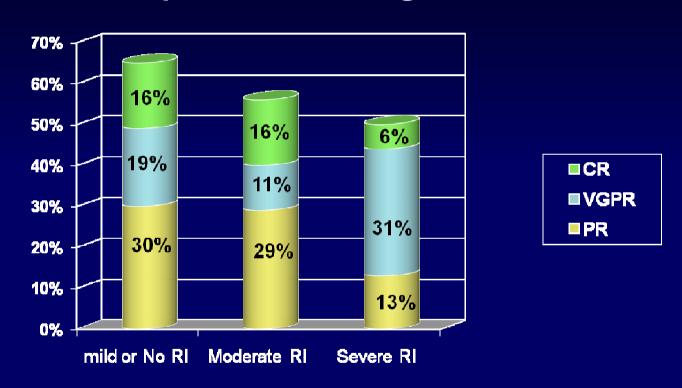
Management of Acute Renal Impairment in Myeloma Patients

1. Supportive Care

2. Mechanical Approaches (plasma exchange, conventional hemodialysis, high cut-off hemodialysis)

3. Systemic Antimyeloma Treatment

Thalidomide Studies in Myeloma Patients with Renal Impairment


Study	MM status	N	Definition of RI	Definition of RF reversal	RI rever sal
Tosi et al Eur J Hematol 2004	Rel/ref	20	sCr>1.5 mg/dl & CrCl<60 mL/min	sCr<1.5 mg/dl	60%
Kastritis et al Haematologica 2007	Newly diagnosed	13	sCr ≥2 mg/dL	sCr<1.5 mg/dl	77%
Tosi et al Eur J Hematol 2010	Newly diagnosed	31	CrCl<50 mL/min	CrCl>60 ml/min	55%

Lenalidomide Studies in Myeloma Patients with Renal Impairment

Study N RI definitions		RI definitions	Starting dose of Len adjusted for RI?	Main efficacy outcomes		
MM-009 and MM-010 ¹⁰	341	No/mild: $Cl_{Cr} \ge 60 \text{ mL/min } (n = 243)$ Moderate: $Cl_{Cr} \ge 30 \text{ to } < 60 \text{ mL/min } (n = 82)$ Severe: $Cl_{Cr} < 30 \text{ mL/min } (n = 16)$	No	Similar OR, quality of response, median PFS, and median TTP regardless of degree of RI OS was lower in moderate/severe RI versus no/mild RI Improvement in renal function in 72% of patients with moderate/severe RI Restoration of normal renal function in 60% of patients with moderate/severe RI		
Dimopoulos et al.11	50	No RI: $Cl_{Cr} \ge 50 \text{ mU/min } (n = 38)$ RI: $Cl_{Cr} < 50 \text{ mU/min } (n = 12)$	Yes	Similar OR, PFS, and OS regardless of degree of RI Improvement in renal function in 42% of patients with RI		
De la Rubia et al. ⁴⁶	15	Advanced RI requiring dialysis (n = 15)	NA	OR 60%; CR 29% median PFS 15 mo; median OS 20 mo		
Compassionate use study ⁴⁷	114	Cl _{Cr} <50 mL/min (n = 8)	Yes	OR 69%; median TTP 9 mo; median OS 22 mo		
Compassionate use study (Spain) ⁴⁸	111	Serum creatinine >177 μmol/L (n = 14)	Yes	OR 66%; CR 11%; median TTP 13 mo; median OS 17.4 mo		
Quach et al. ⁴⁹	75	$Cl_{Cr} \leq 60 \text{ mL/min } (n = 28)$	Yesª	OR in patients with RI (73%) similar to that in patients with normal renal function		
Klein et al. ³⁸	167	No: $Cl_{Cr} \ge 80$ mL/min $(n = 94)$ Mild: $Cl_{Cr} \ge 50$ mL/min to <80 mL/min $(n = 40)$ Moderate/severe: $Cl_{Cr} < 50$ mL/min $(n = 33)$	Yes)	OR decreased as degree of RI increased (67% versus 60% versus 49%, respectively) Median TTP lower in patients with any RI versus no RI Median OS similar in patients with any RI versus no RI Renal function improvement in 27%; stabilization in 81%		
Ludwig et al.50	18	Acute renal failure (n = 18)	Yes	Renal response in 8/13 (62%)		

Len/Dex in RR Myeloma Patients with Renal Impairment

Response according to renal function

Incidence of thrombocytopenia was higher in patients with RI

RI was defined by creatinine clearance (CLCr) level: mild or no RI, CLCr ≥60 mL/min; moderate RI, CLCr ≥30, <60 mL/min; severe RI, CLCr <30 mL/min.

Pomalidomide + low dose Dexamethasone in RR Myeloma Patients with Renal Impairment

PFS and OS by Renal Function

RI (CrCI)	None (≥ 60 mL/min)			Moderate (< 60 mL/min)		
	POM + LoDEX	HiDEX HR (P Value)		POM + LoDEX	HiDEX	HR <i>(P</i> Value)
n (%)	206 (68)	93 (61)		94 (31)	59 (39)	_
Median PFS, m	3.6	1.9	0.47 (< .001)	3.3	1.7	0.44 (< .001)
Median OS, m	Not Reached	9.2	0.57 (.021)	10.4	4.5	0.51 <i>(.008)</i>

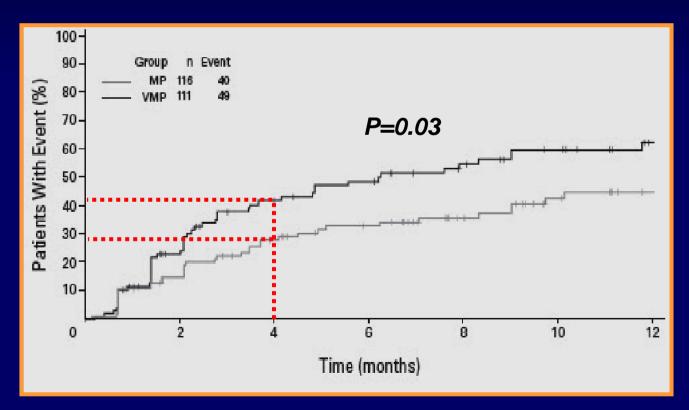
CrCl, creatinine clearance; HiDEX, high-dose dexamethasone; HR, hazard ratio; LoDEX, low-dose dexamethasone; OS, overall survival; PFS, progression-free survival; POM, pomalidomide; RI, renal impairment.

Bortezomib Studies in Patients with Renal Impairment/Failure

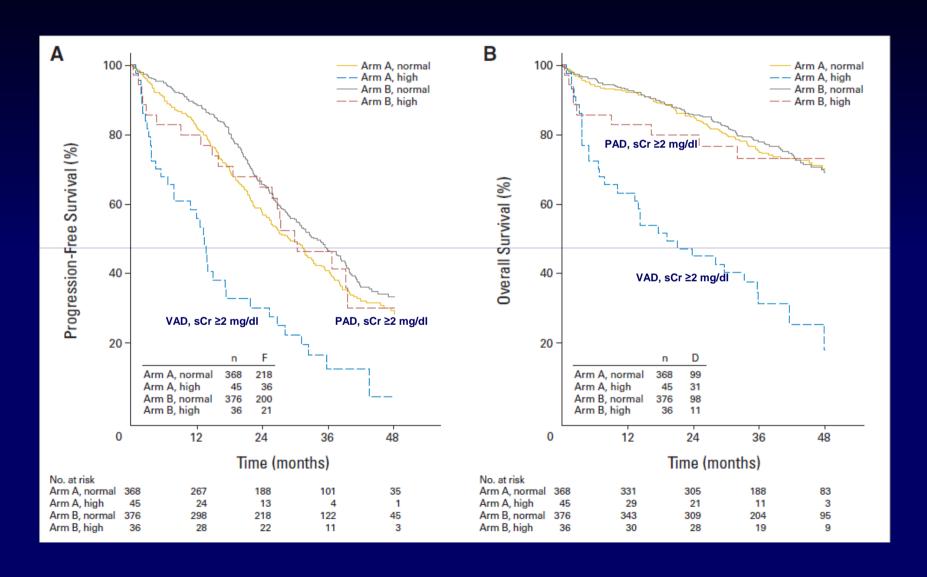
Study details	Patients with renal impairment (n)	Dialysis pts (n)	Outcome	Reference	
Phase II (SUMMIT, CREST subanalysis)	151		Bortezomib effectiveManageable toxicities	Jagannath <i>et al. Cancer</i> 2005;103:1195–2000	
Phase III (APEX subanalysis)	62		Efficacy, safety, TTP, OS not substantially affected in moderate- to- severe renal impairment	San Miguel et al. Leukemia 2008;22:842-9	
Retrospective analysis	24	24	High response rateManageable AEs	Chanan-Khan <i>et al. Blood</i> 2007; 109:2604–2606	
Phase I	34	9	Bortezomib clearance independent of renal function	Mulkerin <i>et al. Blood</i> 2007;110:(Abstract 3477)	
Phase II	54	3	No significant association between renal function and response to treatment	Ailawadhi <i>et al. Blood</i> 2007;110:(Abstract 1477)	
Retrospective analysis	46	9	Reversal of renal failure in 59%2 / 9 became dialysis independent	Dimopoulos et al. Clin Lymphoma Myeloma 2009;9:302-6.	
Phase II	68	9	3 / 9 became dialysis independent62% had a renal response	Ludwig et al. J Clin Oncol 2010;28:4635-41	
Retrospective analysis	117	14	>80 ml/min in 41%3 / 14 discontinued dialysis	Morabito et al Eur J Haematol 2010; 84:223–228	

Bortezomib: Dialysis Patients

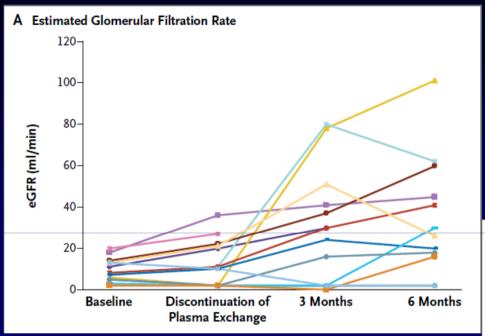
- Retrospective case analysis from 5 US cancer centers
- 24 patients with MM and advanced RF receiving or scheduled for dialysis
- Bortezomib 1.3 mg/m² alone or in combination before (n = 2), during* (n = 1) or after (n = 19) dialysis

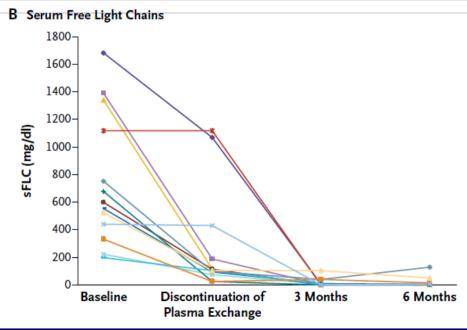

Response rates (%)					
ORR 75					
CR	25				
nCR	5				
PR	45				

- 1 patient responded rapidly (spared dialysis)
- 3 patients became dialysis-independent
- Median DOR: 12.5 months

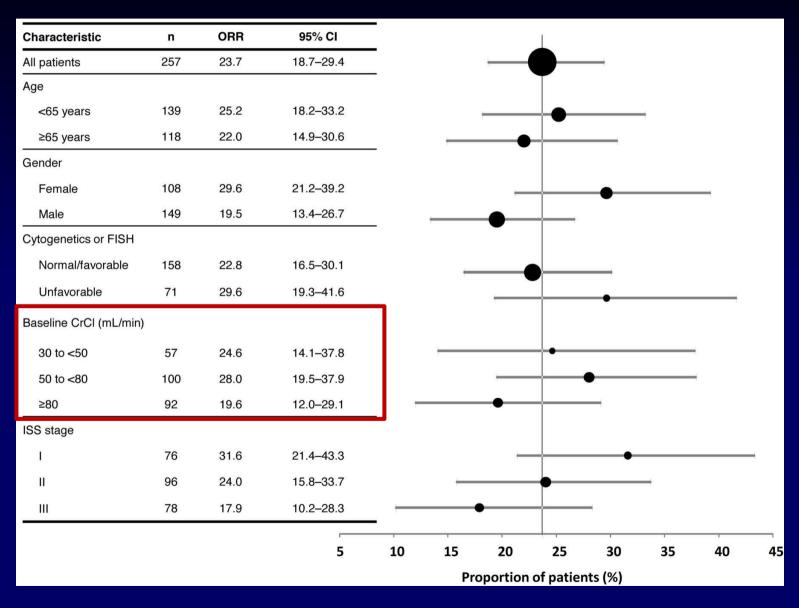

Adverse event (all grades,>10%)	Patients (n=18)
Thrombocytopenia	39%
Peripheral neuropathy	11%
Infection	11%
Serious AEs	6%
Progressive disease	33%

VISTA: Time to Reversal of Renal Impairment


Median time to renal impairment reversal in all patients with baseline GFR <50 mL/min was significantly shorter with VMP vs. MP

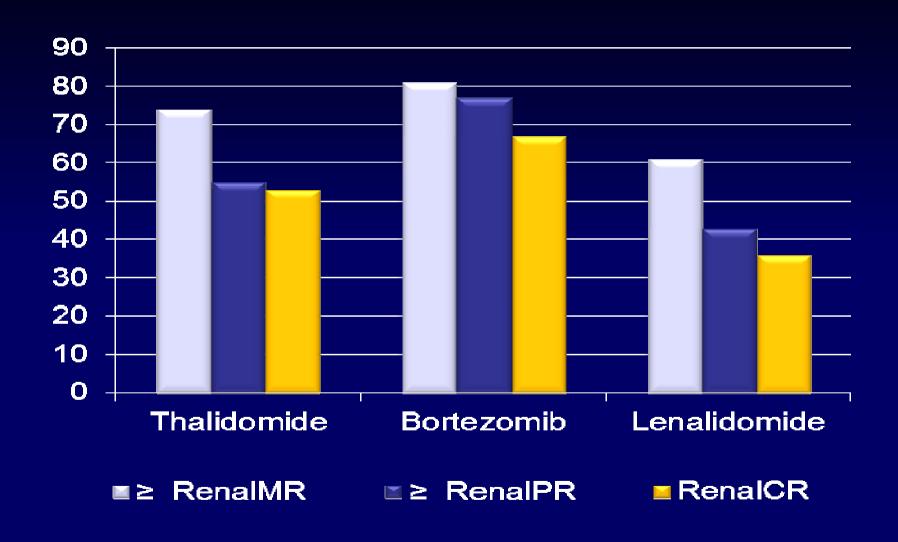


PAD vs. VAD: PFS and OS according to Renal Function

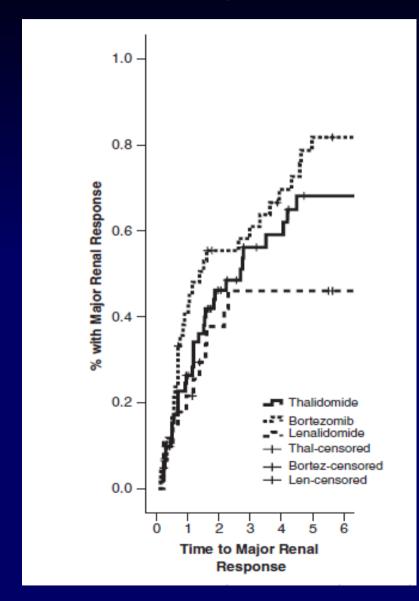


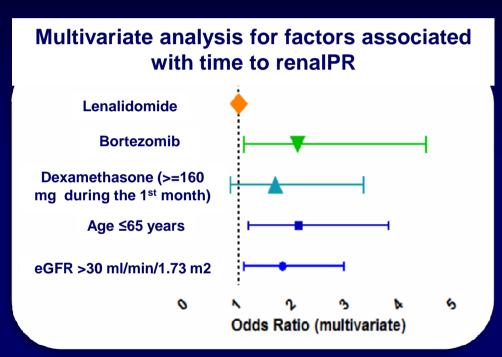
Bortezomib + Plasma Exchange in Patients with Renal Impairment

Carfilzomib in Patients with Renal Impairment (1)


Carfilzomib in Patients with Renal Impairment (2)

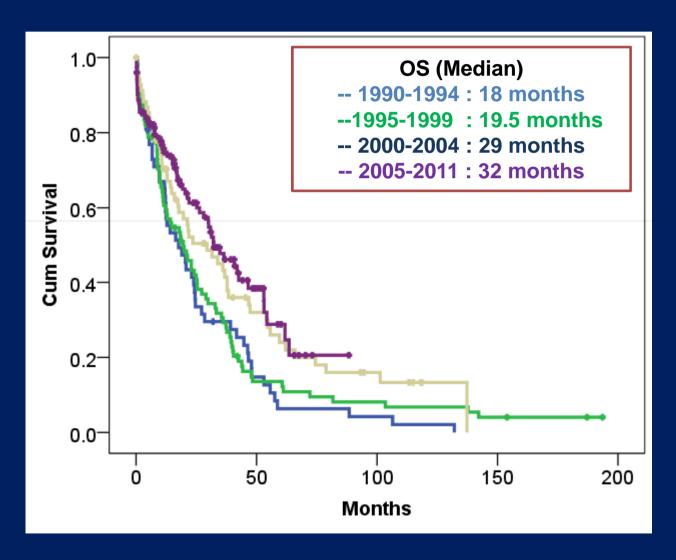
	Group 1	Group 2	Group 3	Group 4	Group 5	All patients
All patients with response assessment	t					
Response category, n (%)	n = 11	n = 11	n=9	n=8	n=8	n=47
Complete response	0	0	0	0	0	0
Very good PR	0	0	0	0	0	0
PR	2 (18.2)	3 (27.3)	2 (22.2)	2 (25.0)	3 (37.5)	12 (25.5)
Minimal response	1 (9.1)	1 (9.1)	0	1 (12.5)	0	3 (6.4)
Stable disease	7 (63.6)	3 (27.3)	4 (44.4)	3 (37.5)	4 (50.0)	21 (44.7)
Progressive disease	1 (9.1)	4 (36.4)	3 (33.3)	2 (25.0)	0	10 (21.3)
Not evaluable	0	0	0	0	1 (12.5)	1
Overall response rate, n (%)	2 (18.2)	3 (27.3)	2 (22.2)	2 (25.0)	3 (37.5)	12 (25.5)
Duration of response, median (95% CI), months	NE (2.0-NE)	NE (4.2-NE)	NE (2.3-NE)	NE (7.9-NE)	7.9 (6.5–8.5)	7.9 (6.5–NE)
Response assessment in patients who	received dexameth	asone ≥20 mg befo	re carfilzomib doses	s ^a		
Response category, n (%)	n=7	n=8	n=4	n=5	n=4	n=28
Complete response	0	0	0	0	0	0
Very good PR	0	0	0	0	0	0
PR	3 (42.9)	3 (37.5)	1 (25.0)	0	3 (75.0)	10 (35.7)
Minimal response	1	1 (12.5)	0	1 (20.0)	0	3 (10.7)
Stable disease	3 (42.9)	1 (12.5)	3 (75.0)	2 (40.0)	1 (25.0)	10 (35.7)
Progressive disease	0	3 (37.5)	0	2 (40.0)	0	5 (17.9)
Not evaluable	0	0	0	0	0	0

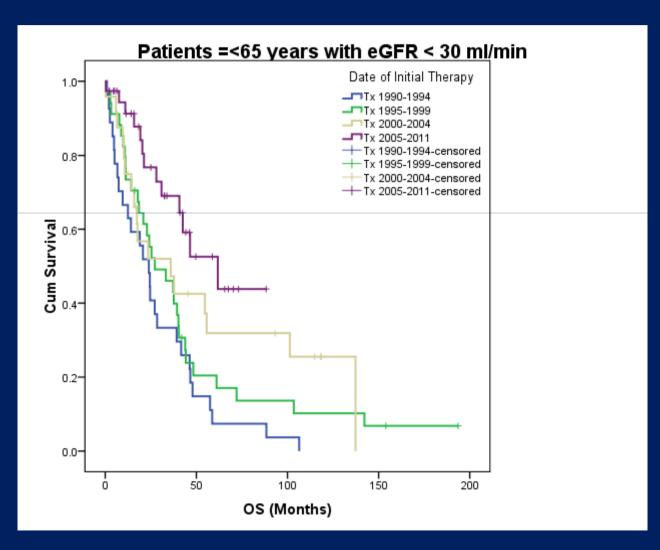

Novel Agents and the Reversibility of Renal Impairment in Newly Diagnosed Myeloma Patients


- N=133 consecutive previously untreated patients
 - Group T: 62 patients received thalidomide-based regimens (TD, T-VAD, MDT, MPT)
 - Group B: 43 patients received bortezomib-based regimens (VD, VCD, VTD)
 - Group L: 28 patients received lenalidomide-based regimens (Rd, MPR)

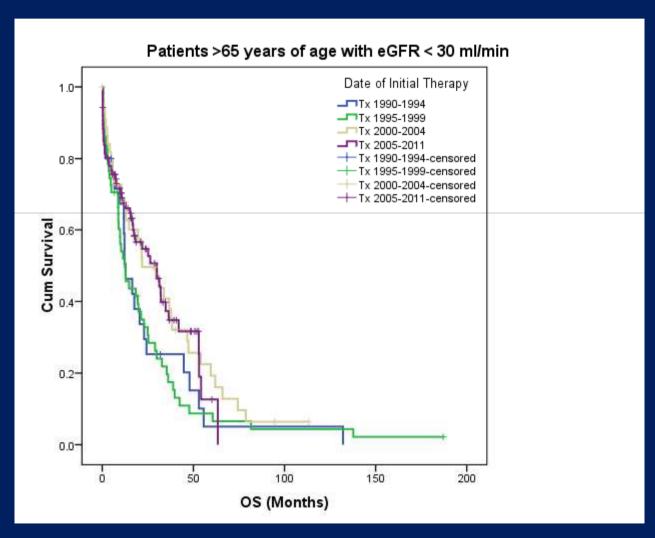
Impact of Novel Agents on Renal Impairment

Impact of Novel Agents on the Reversibility of Renal Impairment




High Dose Melphalan and Autologous Stem Cell Transplant in patients with RI

- Renal impairment does not affect the quality of stem cell collection or engraftment¹⁻³.
- A reduced dose of melphalan (140 mg/m²) is used in patients with severe RI or those undergoing dialysis; the reduced dose does appear to be as effective as the standard 200 mg/m² but it has not been tested in a randomized study¹
- HDM in patients with RI is associated with increased risk of toxicity, which seems to increase with the degree of renal dysfunction^{4,5}.


Survival of patients with severe RI (CKD 4-5)

The Use of Novel Agents Have Increased Survival of Myeloma Patients with Severe Renal Impairment mainly in Patients ≤65 Years (1)

The Use of Novel Agents Has Increased Survival of Myeloma Patients with Severe Renal Impairment also in Patients > 65 Years (2)

Renal Impairment Summary IMWG Guidelines

In Myeloma Patients with Renal Impairment

- Available data support the safety and efficacy of bortezomib-based therapies in this setting and thus bortezomib plus high dexamethasone (maybe with thalidomide, cyclophosphamide or doxorubicin?) is the recommended treatment for myeloma patients with renal impairment of any grade.
- Thalidomide is also an option for patients with severe renal impairment, although data are less extensive.
- Lenalidomide is a feasible and effective treatment option for patients with mild-to-moderate renal impairment, if it is used at the recommended reduced dose based on renal function.

Acknowledgments

Department of Clinical Therapeutics

Plasma Cell Dyscrasias Unit

- E Terpos
- E Kastritis
- M Roussou
- M Gavriatopoulou
- E Eleutherakis-Papaiakovou
- N Kanellias
- M lakovaki
- D Kalapanida
- M Migkou
- D Christoulas
- M Gkotzamanidou
- D Mparmparoussi
- C Matsouka
- C Liakou
- T Bagratuni

Greek Myeloma Study Group

- K Zervas, E Katodritou (Thessaloniki)
- S Delimpasi (Athens)
- E Michalis (Athens)
- F Kontopidou, E Giannouli (Athens)
- A Zomas (Athens)
- V Pappa, P Tsirigotis (Athens)
- Z Kartasis (Halkida)
- A Pouli (Athens)
- K Tsatalas (Alexandroupolis)
- A Symeonidis (Patras)
- E Hatzimichail (loannina)
- MC Kyrtsonis (Athens)
- P Repoussis (Pireus)
- NA Viniou (Athens)
- E Stefanoudaki (Athens)
- P Panayiotidis (Athens)
- A Anagnostopoulos (Thessaloniki)
- K. Konstantopoulos (Athens)