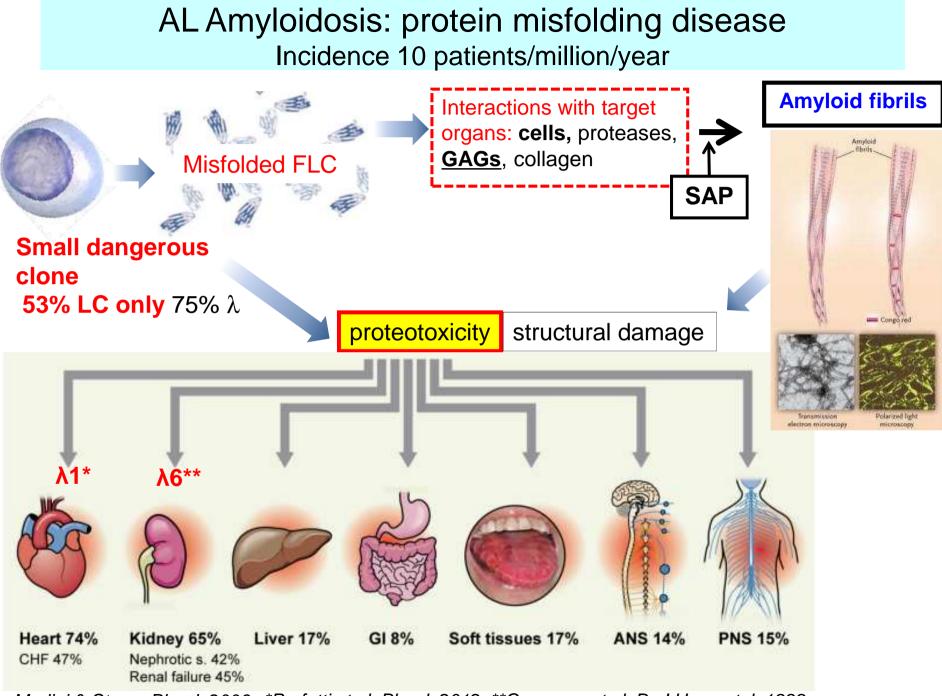
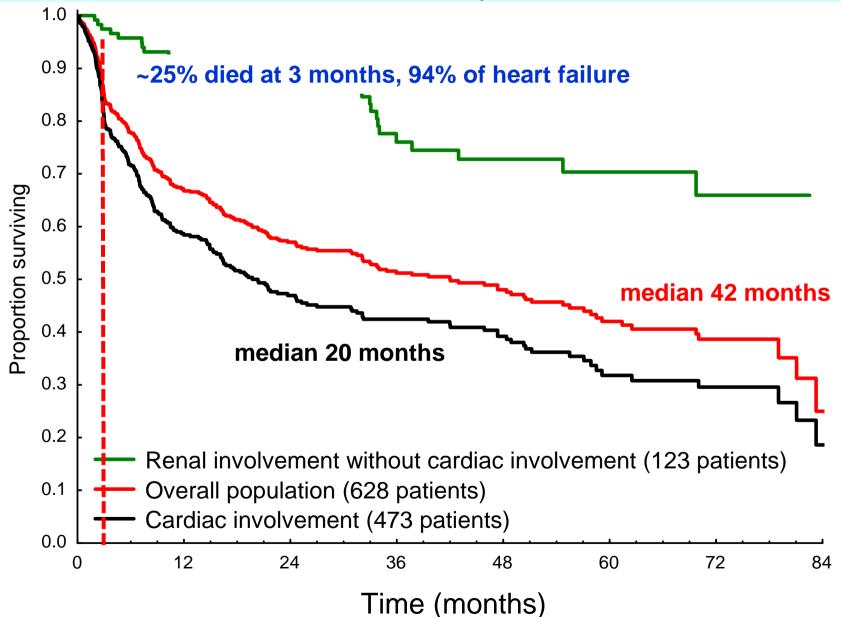


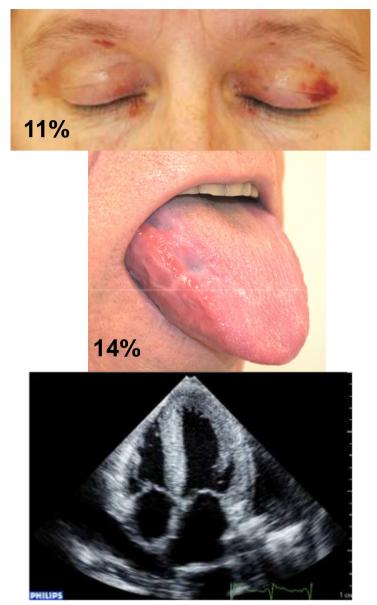
Management of AL amyloidosis in 2013


Giampaolo Merlini

Amyloidosis Research and Treatment Center, Foundation Scientific Institute Policlinico San Matteo and Department of Molecular Medicine, University of Pavia,

Italy

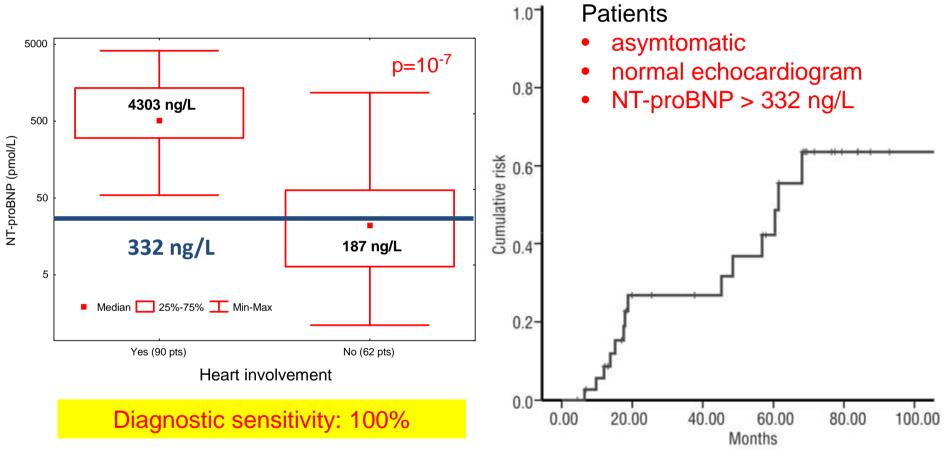




Merlini & Stone, Blood. 2006; *Perfetti et al, Blood. 2012; **Comenzo et al, Br J Haematol. 1999

Survival of 628 patients with AL amyloidosis diagnosed between 2004 and 2011 at the Pavia Amyloid Center

When to suspect amyloidosis


Concentric hypertrophy + low ECG voltage

Signs and Symptoms of AL

- Lethargy, fatigue
- Weight loss
- Peripheral edema
- Heart failure
- Diarrhea/constipation
- Peripheral &/or autonomic neuropathy
- Postural hypotension
- Purpura, macroglossia

Signs and symptoms usually reflect advanced organ damage

Serum N-terminal Pro-Natriuretic Peptide type B (NT-proBNP) is a sensitive marker of myocardial dysfunction in AL amyloidosis

Risk for development of cardiac amyloidosis by International Consensus Criteria

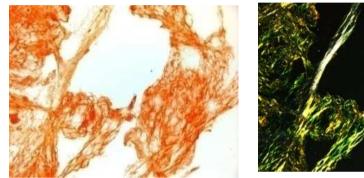
Palladini et al Circulation 2003;107:2440-5

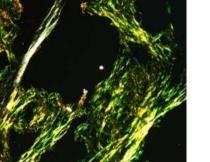
Wechalekar et al Haematologica 2011;96:1079-80

Early detection of end-organ damage in AL amyloidosis

50% with complete Ig \rightarrow 70% preceded by MGUS with abnormal FLC ratio lasting a median of 4 years

Subjects with intermediate- and high-risk MGUS with abnormal FLC ratio should be followed annually for life:


- should be monitored to early detect cardiac and renal damage caused by **amyloid** light chain by measuring:
 - NT-pro-BNP or BNP
 - urine albumin at MGUS presentation and at each follow-up visit


If these tests are positive a procedure to **diagnose AL amyloidosis**¹ should be promptly pursued including:

- 1. detecting and typing amyloid deposits
- 2. assessing the monoclonal disease
- 3. risk stratification/staging

Proving systemic amyloid deposition

Diagnosis of amyloidosis relies on Congo red staining of tissue biopsy

Luminescent conjugated polymers*

Tissue of choice: abdominal fat

sensitivity 88% + BM biopsy 95% specificity 97%

If negative

Biopsy of the labial minor **salivary glands** (sensitivity in patients with negative fat aspirate: 58%, NPV 91%)

If negative

Biopsy of the **involved organ** (kidney, liver, heart): beware of the hemorrhagic risk

Sipe et al, *Amyloid.* 2012;19:167-170 – *Nilsson et al, *Am J Pathol.* 2010;176:563-574.

Typing of amyloidosis is essential for the choice of therapy

Amyloid type

Organ involvement

Amyloid type	Heart	Kidney	Liver	PNS	ANS	Soft tiss.
AL amyloidosis	++	++	+	+	+	+
Hereditary ATTR amyloidosis	++	±	-	++	+	(+)
Hereditary AApoAI amyloidosis	++	+	++	-	-	-
AA (reactive) amyloidosis	±	++	+	-	+	-
Senile systemic amyl. (wtTTR)	++	_	_	_	_	_
median age 62, similar to MGUS	ΤT				_	

- Up to 10% of patients with hereditary amyloidosis have a monoclonal gammopathy
- 21% of patients with SSA have a monoclonal gammopathy

Palladini & Merlini, Eur J Int Med 2013; Comenzo et al, Blood. 2006;107:3489-91; Lachmann et al, N Engl J Med. 2002;346:1786-9

Typing of amyloidosis is essential for the choice of therapy

- mass spectrometry (the current gold standard)
- immuno-electronmicroscopy (99.5% specificity on 745 abdominal fat biopsies*)
- immunohistochemistry in specialized laboratories
- DNA analysis for hereditary amyloidosis

Vrana et al, *Blood 2009;114:4957-9*; Brambilla et al, *Blood 2012;119:1844-7;* Arbustini et al, *Amyloid 1997;4:157-70;* Schoenland et al, *Blood 2012;119:488-93;** Fernández de Larrea et al, *2013*

Amyloid typing by proteomics

IEMconfirmed igLCk"

disanosis

ALλ

ALK

ATTR

SAA

Case

P6

P11

P2

P1

P9

P12

P13

P8

P4

P3

P6

P10

P16 P14

P26 P26 P19

P20

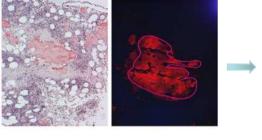
P18

P18

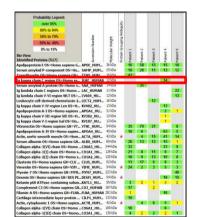
P7

P22

P23


P17

P24


P21

<u>Coupling proteomics with histology</u>: analysis of laser-dissected amyloid

Vrana et al, Blood 2009;114:4957-9

Analysis of intact (abdominal fat) tissue: MudPIT approach

Brambilla et al, Blood. 2012;119:1844-7

IGLCA" TTR SAA

4

0

6

9

0

0

Ø

0

0 0

8

0 0

145

8

261

8

0

0

0

0

0

0

0

0

0

8

0

ß

0

0

0

166

212

165

130

0

0

0

8

0

.

.

0

6

0

0

0

0

0

0

8

8

0

0

Protein extraction and digestion

2D chromatography, LC-MS/MS

Identification of amyloid based on (semi)quantitative evaluation

Gene sequencing is needed when familial amyloidosis is a possibility

- isolated neuropathic or
 cardiac disease → transthyretin
- isolated renal involvement \rightarrow fibrinoge
- renal/liver/cardiac involvement in relati
 →apolipoprotein-A1
- dry mouth/gastro-intestinal/kidney/liver
- corneal lattice dystrophy, progressive bilateral tacial paralysis and cutis Araki & Ando *Proc Jpn Acad Ser B Phys Biol Sci* 2010; 86: 694-97.

RISK STRATIFICATION

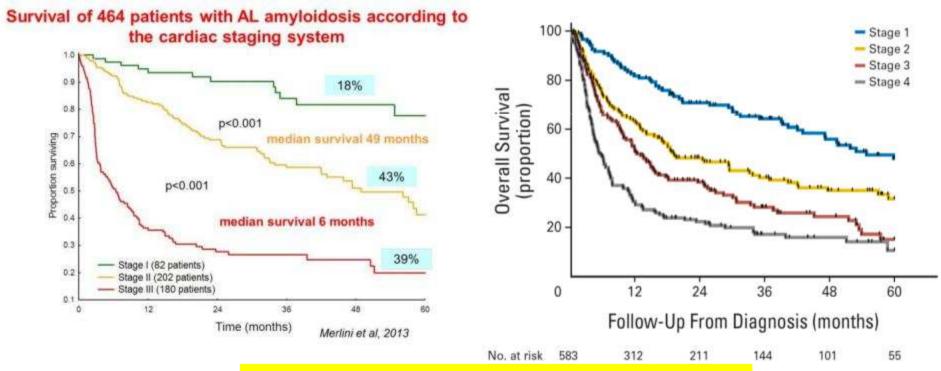
VOLUME 22 - NUMBER 18 - SEPTEMBER 15 2004

JOURNAL OF CLINICAL ONCOLOGY

ORIGINAL REPORT

Serum Cardiac Troponins and N-Terminal Pro-Brain Natriuretic Peptide: A Staging System for Primary Systemic Amyloidosis

Angela Dispenzieri, Morie A. Geriz, Robert A. Kyle, Martha Q. Lacy, Mary F. Burritt, Terry M. Therneau, Philip R. Greipp, Thomas E. Witzig, John A. Lust, S. Vincent Rajkumar, Rafael Fonseca, Steven R. Zeldenrust, Christopher G.A. McGregor, and Allan S. Jaffe

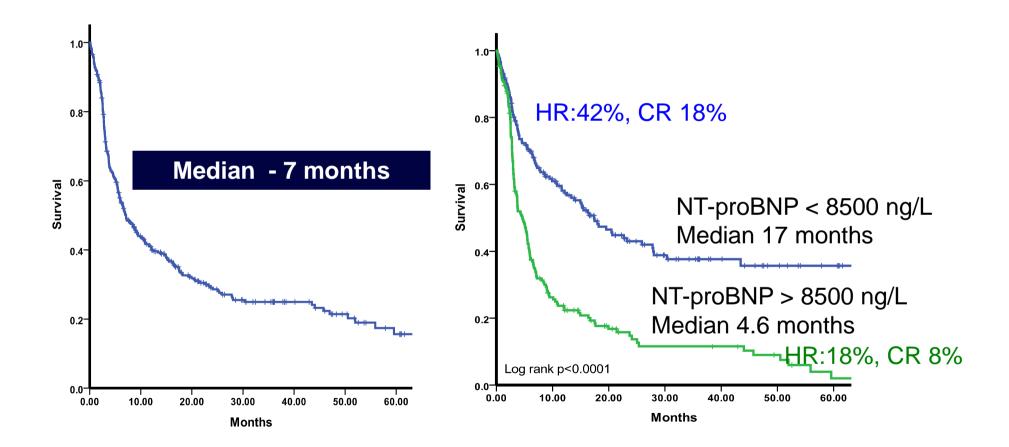

VOLUME 30 · NUMBER 9 · MARCH 20 2012

JOURNAL OF CLINICAL ONCOLOGY

ORIGINAL REPORT

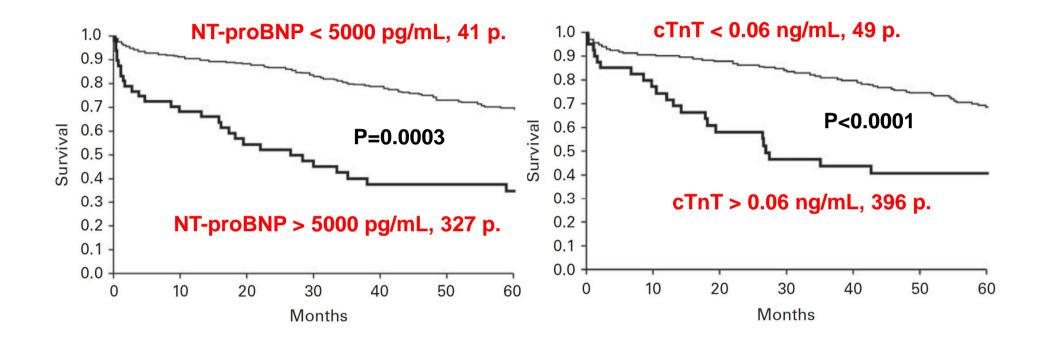
Revised Prognostic Staging System for Light Chain Amyloidosis Incorporating Cardiac Biomarkers and Serum Free Light Chain Measurements

Shaji Kumar, Angela Dispenzieri, Martha Q. Lacy, Suzanne R. Hayman, Francis K. Buadi, Colin Colby, Kristina Laumann, Steve R. Zeldenrust, Nelson Leung, David Dingli, Philip R. Greipp, John A. Lust, Stephen J. Russell, Robert A. Kyle, S. Vincent Rajkumar, and Morie A. Gertz



Two main prognostic determinants:

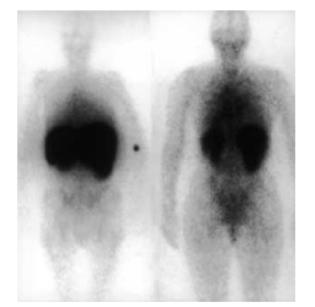
- FLC burden
- Severity of heart involvement


A European collaborative study of treatment outcomes in 346 Patients with Stage III AL amyloidosis

Wechalekar AD, Schonland SO Kastritis E, Gillmore JD, Dimopoulos M, Venner C, Lane T, Foli A, Foard D, Milani P, Rannigan L, Hegenbart U, Hawkins PN, Merlini G and Palladini G Blood, 2013

Refinement in patient selection to reduce treatment-related mortality from SCT in amyloidosis

Gertz et al, Bone Marrow Transplant. 2012 Sep 10 [Epub ahead of print]

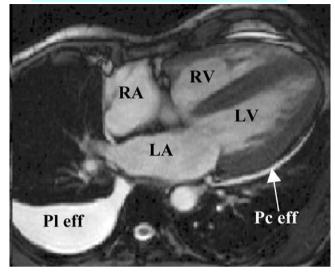


Patients with serum troponin T >0.06 ng/mL or NT-proBNP >5000 pg/mL (not on dialysis) **should not** be considered candidates for SCT because of early mortality.

IMAGING OF AL AMYLOIDOSIS

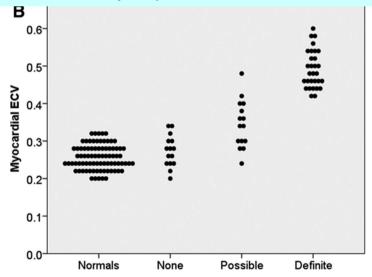
Monitoring amyloid load - SAP scan Lachmann et al, Br. J. Haematol, 2003, 122:78–84

Amyloid load assessed by I¹²³-SAP labelled scintigraphy

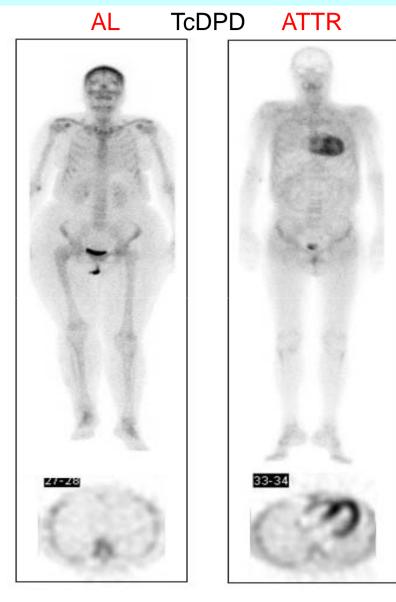


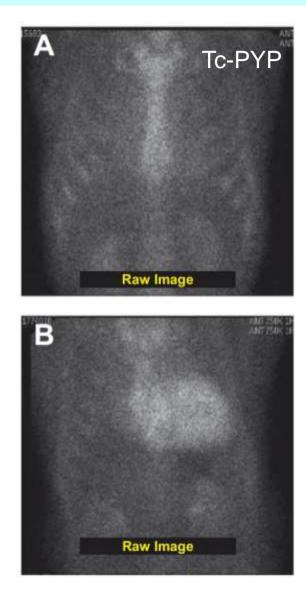
Limited availability outside UK, cannot image the heart

Ecocardiografic evaluation of longitudinal left ventricular function


Buss et al, JACC 2012

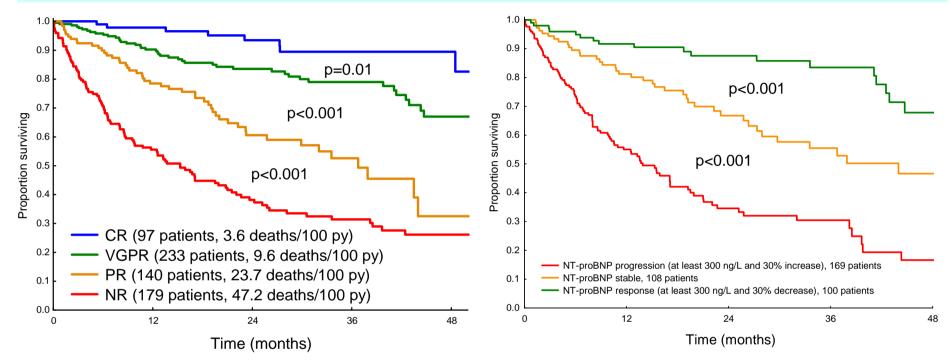
Cardiac MR


Maceira et al, Circulation 2005


Quantification of **Myocardial Extracellular Volume** by Equilibrium Contrast CMR

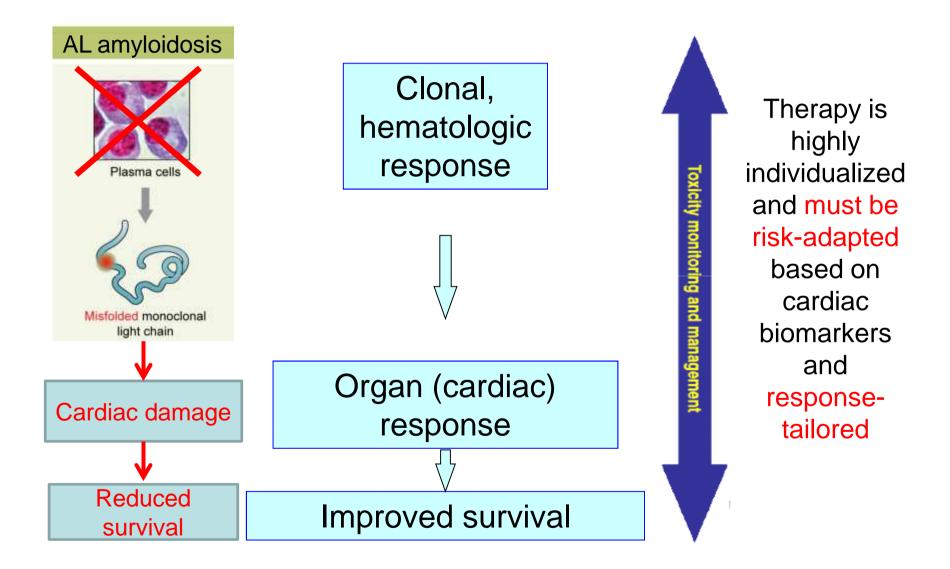
Banypersad et al. Circ Cardiovasc Img 2013

TcDPD and Tc-PYP scintigraphy

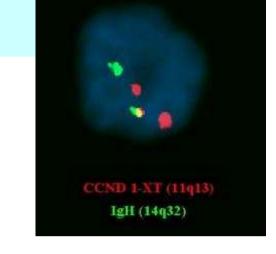


Rapezzi et al, J Am Coll Cardiol Img 2011;4:659–70

Bokhari et al, Circ Cardiov Img 2013;6:195-201


New criteria for response to treatment in immunoglobulin light chain amyloidosis based on free light chain measurement and cardiac biomarkers: impact on survival outcomes. *Palladini et al, J Clin Oncol. 2012;30:4541-9*

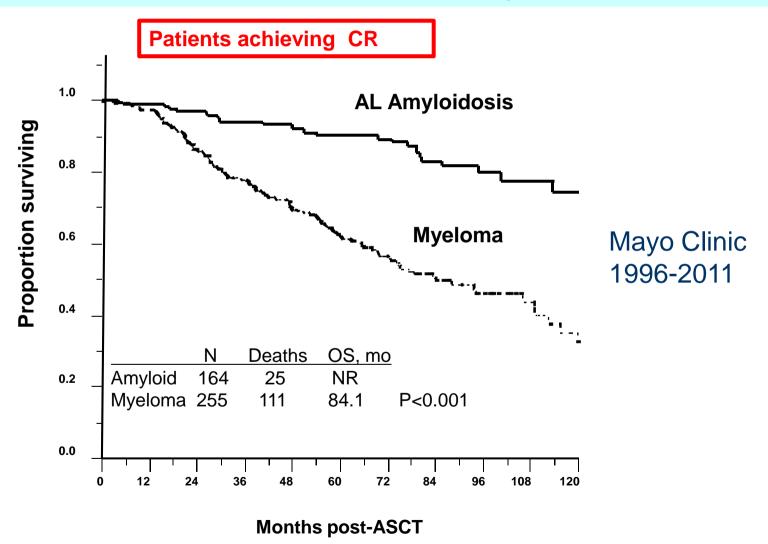
aCR	Negative s. & u.IFE, normal FLR	Renal insufficiency and IMiDs may alter NT-proBNP metabolism
VGPR	dFLC <40 mg/L	 New cardiac response criteria reduction (>30% and >300 ng/L) of
PR	dFLC decrease ≥50%	NT-proBNP
NR	other	Organ response can be delayed


Depth of the response is the leading indicator of durability of treatment benefits

AL AMYLOIDOSIS: THERAPY

Amyloid plasma cell clone

- Low plasma cell burden (median 5-7%) and low proliferative rate
- High frequency of t(11;14) translocation (~40-50%)
 → Cyclin D1 upregulation


- Low frequency of *t*(*4*;14) (4%) and deletion of 17p13 (2%)
- Low frequency of hyperdiploidy (11%)

"AL represents a particular early stage of monoclonal gammopathy" Bochtler et al, *Blood* 2011;117:3809-15

• Patients with AL have superior outcomes than patients with MM after ASCT

Gertz et al, Blood 1989;74:1108-11 - Fonseca et al, Br J Haematol 1998;103:704-10 - Hayman et al, Blood. 2001;98:2266-68 - Harrison et al, Br J Haematol 2002;117:427-35 - Abraham et al, Blood 2005;105:794-803 – Bochtler et al, Blood 2008;111:4700-5 - Bryce et al, Haematologica 2009;94:380-6 - Bochtler et al, Blood 2011;117:3809-15 – Zhou et al, Clin Lymph Myel Leuk 2012;12:49-58

Patients with immunoglobulin light chain amyloidosis (AL) undergoing high dose chemotherapy with autologous stem cell transplantation (ASCT) have superior outcomes as compared to patients with multiple myeloma *Seenithamby et al, ASH 2012 Abstr. 600*

Current treatment options for AL amyloidosis Autologous stem cell transplantation

Regimen	N	HR (CR)	Org. Resp.	100-day mortality	PFS / OS (y)
ASCT Cibeira et al 2011	421	MEL200 (43%) MEL140 (24%)	53%	9% 14%	CR 8.3/13.2 3.4 / 8.4 1.8 / 3.8
ASCT Gertz et al 2010	434	76% (39%)	47%	10%	CR - / not r. PR - / 8.9 NR - / 2.7
Risk-adapted ASCT +adj. BDex <i>Landau et al 2012</i>	40	79% (58%)	70%	ASCT 10% BDex 4%	@2y 69% / 82%
MDex vs ASCT	43	68% (32%)	39%	2% T	TP 2.7/OS 4.7
Jaccard et al, 2007, 2010	37	67%(41%)	45%	24% T	TP 2.7/OS 1.8

Current treatment options for AL amyloidosis Conventional chemotherapy

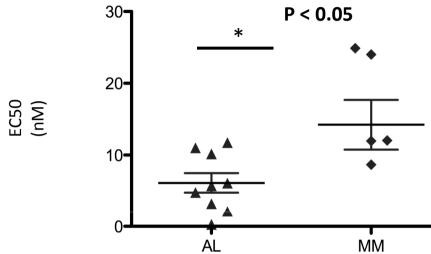
Regimen	HR (CR)	Org. Resp.	Common SAEs	100-day mortality	PFS / OS (y)
MDex Palladini 2004	67% (33%)	48%	Overall 11%	4%	3.8 / 5.1

Current treatment options for AL amyloidosis IMiDs-based therapy and other agents

Regimen	No (front-l)	HR (CR)	Org. Rsp	Common SAEs	100-d mortal.	PFS / OS (y)
CTD Wechalekar 2007	75 (41%)	74% (21%)	27%	Sedation 40% Fluid retent. 21%	4%	1.7 / 3.4
LDex+ Dispenzieri 2007	22 (41%)	41%	23%	Overall 86% Neutropenia 45%	18%	1.6 / -
CLD [#] Kumar 2012	35 (11%)	60% (11%)	31%	Overall 74% Neutropenia 40%	9%	2.4 / 3.1
MLD Moreau 2010	26 (100%)	58% (23%)*	50%	Overall 81% Neutropenia 11%	-	@2y 54% / 81%
PomDex Dispenzieri 2012	33 (0)	48% (3%)	15%	Neutropenia 30%	3%	1.2 / 2.3
BendaDex Palladini 2012 ASH	36 (14%)	47% (3%)	17%	Overall 33% Neutropenia 17%	5%	@3y -/65%

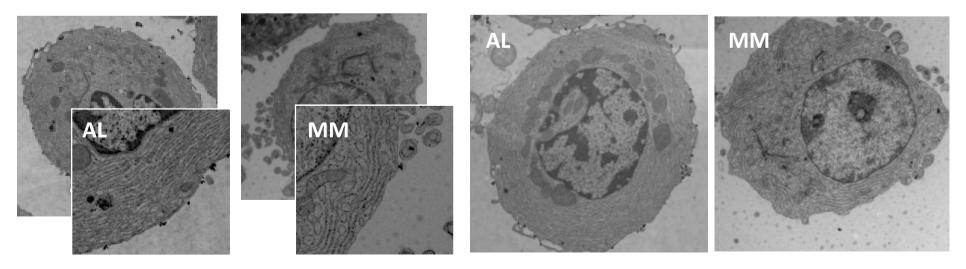
+also Sanchorawala et al, Blood 2007;109:492-6; #also Kastritis et al, Blood. 2012;119: 5384-90 *(42% with full-dose L)

Current treatment options for AL amyloidosis Proteasome inhibitor-based therapy

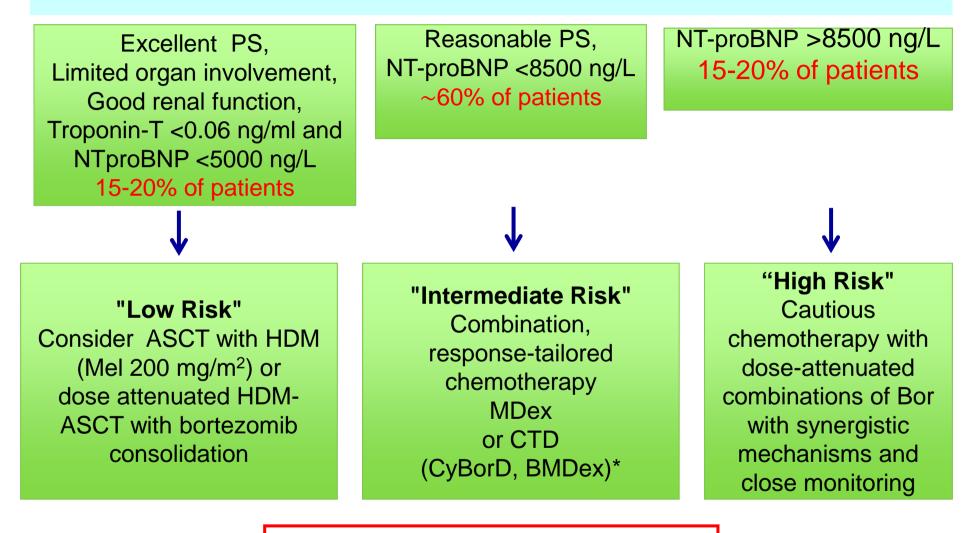

Regimen	No (front-l)	HR (CR)	Org. Rsp	Common SAEs	100-d mortal	PFS / OS (y)
Bortez Reece 2011	70 (0)	68% [§] (29%)	29% K 13% H	Fatigue, Thrombcytpn Vomiting Diarrhea	3%	@1y 74%/93%
BDex Kastritis 2010	94 (19%)	71% (25%)	30%	PN Edema Orthost. hyp.	3%	2/@1y 76%
CyBorD* Venner 2012	43 (47%)	81% (65% fl)	46%	19% discontinued (PN in 14%)	0	@2y 53% / 98%
Ixazomib Merlini 2012**	20 (0)	<mark>55%</mark> (10%)	30% H	Diarrhea Fatigue Thrombcytpn	5%	-/ -

*also Mikhael et al, Blood 2012; 119:4391-4 : ** also Sanchorawala IMW2013 P-229

[§]Median times to first and best HR: 2.1 and 3.2 months in the 1.6 mg/m² QW group, and 0.7 and 1.2 months in the 1.3 mg/m² BW group


Electron microscopy and functional studies reveal cellular stress in amyloidogenic plasma cells Oliva et al. IMW 2013 P-458

Apoptotic sensitivity to bortezomib



Primary AL cells are 2-3 times more sensitive to bortezomib than myeloma cells

AL PCs are more stressed than MM PCs, with more expanded ER (p<0.0001) and more perinuclear mitochondria (p = 0.0007)

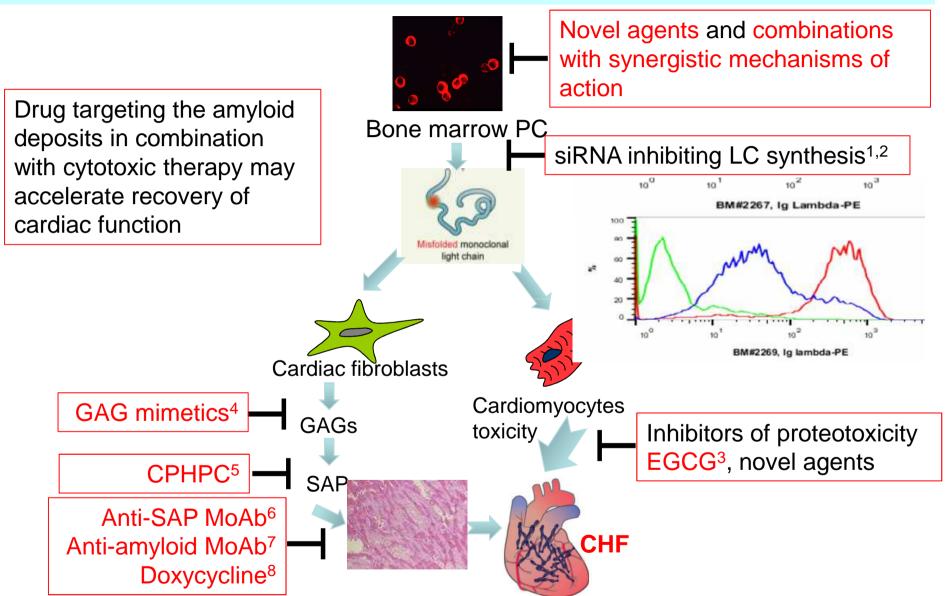
Risk-adapted front line treatment of AL

Patients should be treated within controlled clinical trials

Management of AL amyloidosis in 2013

- Treatment endpoint: at least VGPR
- Hematologic and cardiac response should be assessed frequently, every 1-2 cycles (or three months after ASCT)
- Rapid switch if no response
- Therapy can be continued for 1-2 cycles beyond best response for consolidation

Management of AL amyloidosis in 2013 Supportive therapy


- multidisciplinary (nephrologist, cardiologist) monitoring
 - kidney transplantation
 - age < 65 yrs, no heart or liver involvement,
 - complete response usually required
 - heart transplantation
 - age < 65 yrs
 - at high cardiac risk
 - without significant extra-cardiac amyloidosis

Best tolerated treatment should start immediately at diagnosis and after OHT while waiting for possible ASCT

• left ventricular assist device, experience in 9 patients: it is technically feasible, but poor outcomes and high morbidity*

Casserly et al, Kidney Int 2003;63:1051–7; Dey et al, Transplantation 2010; 90:905-11; Sattianayagam et al, Am J Transplant 2010;10:2124-31; Herrmann et al, Nephrol Dial Transplant 2011;26:2032–6; Pinney et al, Am J Transplant. 2013;13:433-41; Kristen et al, Eur J Heart Fail 2009; 11:1014-20; Lacy et al,; J Heart Lung Transplant 2008; 27:823-9; Mignot et al. Arch Cardiovasc Dis. 2008;101:523-32.; * Swiecicki et al, J Heart Lung Transplant. 2013 Mar 5.

Treatment of cardiac AL amyloidosis: Perspectives

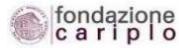
¹Hovey et al, Gene Ther. 2011;12: 1150-6; ²Zhou et al, Personal comm.; ³ClinicalTrials.gov NCT01511263; ⁴Dember et al, N Engl J Med. 2007;356:2349-60;5 ⁵Pepys et al, Nature 2002;417:254–259;⁶Bodin et al, Nature. 2010;468:93-7; ⁷Wall et al, PLoS One. 2012;7:e52686. ⁸Ward et al, Blood. 2011 ;118:6610-7

Conclusions

- Earlier diagnosis remains the keystone for improving the care of AL amyloidosis:
 - Routine adoption of checking NT-proBNP levels and urine albumin during monitoring of patients with MGUS may help early diagnosis
- Therapy is highly individualized and must be risk-adapted and response-tailored
- Novel therapeutic approaches are needed for patients with advanced amyloid cardiomyopathy

Phase III trials necessary through international collaboration: EMN-03 European Network and Centers in Australia for Phase III trial comparing MDex vs BortezMDex

Acknowledgements


European Network - EMN-03 Phase III trial comparing MDex vs BortezMDex

Amyloidosis Research and Treatment Center Dept. Molecular Med. Giovanni Palladini Laura Obici Andrea Foli Paola Rognoni Francesca Lavatelli Mario Nuvolone Paolo Milani Loredana Marchese Stefano Perlini Laura Verga Simona Casarini Alberto Bovera Fernández de Larrea

gmerlini@unipv.it

